

Shannon Technology and Energy Park (STEP) Power Plant

Appendix A6.1: 2007 Hydrological and Hydrogeological Impact Assessment

Shannon LNG Limited

Shannon Technology and Energy Park (STEP) Power Plant Volume 4_Appendices

[Blank Page]

ARUP CONSULTING ENGINEERS

SHANNON LNG: TARBERT / BALLYLONGFORD TERMINAL

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry

Environmental Impact Assessment Report

MEL Brief 1946-C1 MEL Doc. Ref.: 1946-156 (Rev. 4)

Tuesday, 24th August 2007

Confidential Report To:

Eoghan Lynch Arup Consulting Engineers 15 Oliver Plunkett Street Cork

Confidential Report For:

Urzua Alfredo Shannon LNG Limited C/o Hess LNG One New Street Fall River MA 02720 United States

Report submitted by:

Minerex Environmental Limited

Taney Hall, Eglinton Terrace, Dundrum Dublin 14 Ireland

Tel.: +353-(0)1-2964435 Fax.: +353-(0)1-2964436 Website: <u>www.minerex.ie</u> Orlagh Madden M.Sc. (Env. Science) Project Manager

Reviewed by:

Prepared by:

Eileen McCarthy M.Sc. Project Director & Senior Hydrogeologist

Table of Contents

1.	ΙΝΤΙ	RODUCTION1
1.1	L S	cope and Purpose1
1.2	2 V	Vork Schedule
1.3	8 A	rea of Study2
2.	MET	THODOLOGY
2.1	l I	Desk Study
2.2	2 F	Yield Investigations 3
2.3	3 I	mpact Assessment Methodology
3.	DEV	ELOPMENT DESCRIPTION
4.	SITE	E DESCRIPTION
4.]	l I	ocation
4.2	2 1	Copography
4.3	3 E	Coology
4.4	4 (Geology
	4.4.1	Bedrock Geology9
	4.4.2	Soils and Subsoils
4.5	5 F	Iydrology14
	4.5.1	Catchments14
	4.5.2	Drainage14
	4.5.3	Springs
	4.5.4	Coastal Lagoon
	4.5.5	Water Chemistry
	4.5.6	Water Levels
	4.5.7	Vertical Hydraulic Gradients
	4.5.8	Horizontal Hydraulic Gradients
	4.5.9	Surface Water Levels
5.	POT	ENTIAL IMPACTS
6.	ΜΙΤ	IGATION MEASURES
7.	RES	SIDUAL IMPACTS
8.	REF	ERENCES

Appendices

Appendix	Title	Pages	MEL Doc. Ref.
Appendix A	Site Location Map	1 x A4	1946-008.wor
Appendix B1	Regional Bedrock Geology Map	1 x A4	1946-008.wor
Appendix B2	Regional Subsoils Geology Map	1 x A4	1946-008.wor
Appendix C1	Hydrology Map - Macro-Catchments with Primary Drainage Features	1 x A4	1946-008.wor
Appendix C2	Hydrology Map - Micro-Catchments and Primary and Secondary Drainage Features	1 x A4	1946-008.wor
Appendix D1	Regional Bedrock Aquifer Map	1 x A4	1946-008.wor
Appendix D2	Regional Bedrock Vulnerability Map	1 x A4	1946-008.wor
Appendix E	Depth to Bedrock (Subsoils Thickness) Map	1 x A4	1946-008.wor
Appendix F1	Special Area of Conservation (CSAC) & Natural Heritage Area (PNHA) Designated Areas	1 x A4	1946-008.wor
Appendix F2	Habitats of Concern within and peripheral to Designated Areas	1 x A4	1946-008.wor
Appendix G1	Groundwater and Surface Water Monitoring Network	1 x A4	1946-008.wor
Appendix G2	Groundwater Monitoring Network	1 x A4	1946-008.wor
Appendix G3	Surface Water Monitoring Network	1 x A4	1946-008.wor
Appendix H1	Groundwater Subsoils Phreatic Contour Map – April 2007	1 x A4	1946-008.wor
Appendix H2	Groundwater Bedrock Piezometric Contour Map – April 2007	1 x A4	1946-008.wor
Appendix H3	Groundwater Vertical Hydraulic Gradients Map – April 2007	1 x A4	1946-008.wor
Appendix I1	Groundwater Subsoils Phreatic and Surface Water Electrical Conductivity Map – April 2007	1 x A4	1946-008.wor
Appendix I2	Groundwater Subsoils Phreatic and Surface Water pH Map – April 2007	1 x A4	1946-008.wor
Appendix J1	Groundwater Bedrock Piezometric (P1) Electrical Conductivity Map – April 2007	1 x A4	1946-008.wor
Appendix J2	Groundwater Bedrock Piezometric (P1) pH Map – April 2007	1 x A4	1946-008.wor
Appendix K	Conceptual Model of Different Water Sources (based on Chemistry and Hydraulic Gradients)	1 x A4	1946-008.wor
Appendix L	Drainage Discharge (D1) Map – April 2007	1 x A4	1946-008.wor
Appendix M1	Water Level, Field Chemistry and Flow Gauging Database – (March to April 2007)	7 x A4	1946-011.xls

Arup Consulting Engineers Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

Appendix M3	Analytical Chemistry Results for IGSL Borehole Standpipe Installations – January 2007	1 x A4	1946-010.xls
Appendix N	Selected Photographs from Site Investigations and Surveys	10 x A4	1946-173.ppt
Appendix O1	MEL Site Investigation Logs and Groundwater Monitoring Point Installations	23 x A4	1946-024.ppt
Appendix O2	IGSL Site Investigation Logs and Groundwater Standpipe Installations	30 x A4	1946-055.pdf

List of Tables

Table	Title	Page
Table 1	Habitats with conservation / designation status at the Shannon LNG site.	8
Table 2	D1 (Primary Drainage) channel dimensions, substrate characteristics and flow rates.	16
Table 3	Secondary and Tertiary drainage channel dimensions, substrate characteristics and flow rates.	18
Table 4	Electrical Conductivity and pH maximum, minimum and average values for various sub-categories of surface water type (March and April 2007).	21
Table 5	Groundwater Electrical Conductivity and pH maximum, minimum and average values for various categories of subsurface lithology (April 2007).	24

1. INTRODUCTION

1.1 Scope and Purpose

Arup Consulting Engineers (Arup) on behalf of Shannon LNG contracted Minerex Environmental Ltd (MEL) on the 20th March 2007 to undertake a detailed hydrological and hydrogeological environmental impact assessment (EIA) of the potential direct and indirect impacts by the proposed Shannon LNG Terminal Development on designated and protected habitats within the Lower Shannon candidate Special Area of Conservation (cSAC) and within Ballylongford proposed National Heritage Area (pNHA).

The following items form part of the work scope:

- (a) Review all geotechnical site investigation data completed by IGSL for the proposed Shannon LNG Terminal Development that may be relevant to the hydrology and hydrogeology of the designated and protected habitats. Carry out a site walkover, preliminary hydrochemical survey and identify requirements for further environmental site investigation (MEL Brief A1).
- (b) Specify and scope environmental site investigation programme required to provide a robust data set for hydrological and hydrogeological impact assessment by the proposed Shannon LNG Terminal development (MEL Brief B1) on the protected wetland habitats.
- (c) Produce a detailed hydrological and hydrogeological impact assessment report for inclusion in the Environmental Impact Statement (EIS), covering the potential direct and indirect impacts by the proposed Shannon LNG Terminal Development on designated and protected habitats.

Minerex has completed each of these work items, which are described in detail in this report.

1.2 Work Schedule

The following work schedule has been completed for the purpose of preparing this report:

- 20th to 23rd March 2007 Review all technical data for the project, evaluate how relevant the data is and what additional data is required for impact assessment.
- 26th to 29th March 2007 Preliminary site walkover, preliminary surface water hydrochemical survey, preliminary site investigation using Gouge Coring (GC) and Percussion Window Sampler (PWS) and installation of staff gauges along the site's main stream (D1) and in the lagoon.
- 9th to 14th April and 23rd April 2007 Detailed site investigations peripheral to protected habitats within cSAC and pNHA using Air Flush Rotary Percussion and Symmetrix Open Hole Drilling (IGSL), detailed logging of returned subsoils and bedrock chippings, and supervision of groundwater monitoring phreatic and piezometer nest installations.
- 23rd to 26th April 2007 Measurement of groundwater and surface water levels (MEL installations), discharge rates in D1 (flow gauging measurements), field hydrochemistry (both surface water and groundwater (from IGSL boreholes and MEL BR (Bedrock) Series

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

installations). This work coincided with the commissioning of the groundwater monitoring network.

 21st to 24th May 2007 – Processing all site investigation and survey results, production of graphics and Draft EIA report.

The schedule demonstrates that an extensive fieldwork programme was executed to acquire all key hydraulic and hydrochemical data needed to undertake a full impact assessment for the site. Field results were typed up or processed (e.g. collating of water level and hydrochemistry data) after each field event into MEL standard templates, databases and maps.

1.3 Area of Study

For the purpose of the present study, specific environmental investigation has been confined to the immediate vicinity of the site, as shown in Appendix A. However, the site has also been considered in its wider environmental context based on other available information, including information gained during the geotechnical investigation of the site. The main focus of the study is, however, the areas of designated and protected habitat adjacent to the north-western part of the site, as shown in Appendix F2. In order to assess the potential impact of the development on these habitats, environmental investigation and monitoring work has been carried out specifically within and adjacent to these areas, extending to sufficient distance to encompass the 'zone of influence' around the habitats. The area within which this specific environmental investigation work has been carried out is shown in Appendix G1.

2. METHODOLOGY

2.1 Desk Study

The desk-based work items comprised the following:

- Acquisition of all relevant data to complete a conceptual hydrological / hydrogeological model.
- Consultation with the client and interrogation of available databases regarding water supplies within the potential impact zone of the proposed development (wells, springs and surface water sources).
- Construction of layers of information in a GIS Graphic database showing Geology, Hydrology, Hydrology, Hydrology, Ecology and the Proposed Development Layout.
- Processing of all data acquired into MEL's Variable and Non-Variable Database, with Graphics output in GIS MapInfo.
- Production of a <u>Progress Report to the Client</u> confirming findings, new data / information of note and any change to the planned site investigations programme arising from site reconnaissance.

The equipment and materials used during this desk study consisted of:

- MapInfo GIS
- Microsoft Excel
- Microsoft Word
- Microsoft Powerpoint

2.2 Field Investigations

Field investigations comprised:

- A site walkover to confirm details of the drainage network, drainage hierarchy, condition of existing borehole standpipes for use as groundwater monitoring points, groundwater seepage areas and catchment divides.
- Drainage hydrochemistry profiling (Electrical Conductivity (EC), pH and Temperature) along D1, in secondary drains and at spring discharge locations to determine sources of water (e.g. groundwater inflow / outflow and runoff).
- A lagoon and wetland open water survey to identify hydrochemical variability arising from spring discharge, groundwater seepage or seawater incursion.
- Selection of suitable locations, on completion of hydrochemical survey, for staff gauge installations, flow gauging stations and ongoing surface water chemistry monitoring.
- Flow gauging (discharge) measurements in the main drain (D1) at six (6) selected locations along its length within the Shannon LNG site boundary to determine baseline flow capacity.
- Water level monitoring and wellhead hydrochemical testing (EC, pH and Temperature) of existing IGSL groundwater standpipes (BH Series).

- Selection of suitable locations peripheral to protected habitats (cSAC and pNHA) for drilling and installation of phreatic / piezometer nest installations for the purpose of monitoring groundwater in relation to the proposed development (source of impact) and the designated habitats (potential target).
- Description and logging of subsoils and bedrock returns from Air Flush Rotary Percussion drilling to BS 5930 (Ref.1), for the purpose of determining subsoil and bedrock types, texture and permeability characteristics.
- Installation of secure wellhead completions for MEL BR Series installations on agricultural lands, to secure and protect wellheads for future monitoring.
- Purging and sampling of groundwater from the MEL BR Series installations (peripheral to cSAC and pNHA) for field parameter testing (EC, pH and Temperature).
- Survey in all monitoring point installations (groundwater and staff gauges for surface water) in order to correlate data.
- Recording of GPS co-ordinates for all surveyed items of note, and acquisition of digital photographs of all geo-referenced items for future reference.
- Confirmation of logistics for site access for site investigations and future monitoring programme.

The equipment and materials used during field investigations consisted of:

- Track Mounted 4 Tonne Air Flush Rotary Percussion Drilling Rig.
- Gouge Corer / Hand Auger and Percussion Window Sampler (PWS) for peat and overburden hand probing.
- Hanna Combo (Model no. HI 98129) pH/EC/Temp meter for hydrochemical measurements.
- Hanna Combo (Model no. HI 98130) pH/EC/Temp meter for saline hydrochemical measurements.
- Solinst Water Level Meter (Model 101 30m) for measuring water levels in groundwater installations.
- Solinst 410 Peristaltic Pump for withdrawing groundwater from BR Series monitoring points.
- WASP 2" 12v Submersible Pump for withdrawing groundwater from BH Series monitoring points.
- OTT C2 Impeller flow meter for drainage (D1) flow measurements.
- Handheld Garmin Etrex 12 channel Global Positioning System (GPS) for navigation and recording position of site investigation and monitoring points.
- GPS 500 and R125N Pentax Total Station for surveying
- Olympus Digital Camera FE-210 for taking photographs of all items of reference.

2.3 Impact Assessment Methodology

The present report provides a detailed impact assessment based on extensive surface and sub-surface investigation. Using the desk and field data acquired, the following assessment methodology has been

adopted in order to evaluate the potential impact of the proposed Shannon LNG Terminal Development on designated and protected habitats:

- Characterise the site's existing hydrological / hydrogeological regime based on the topographical, geological, geomorphological, hydraulic and hydrochemical data acquired.
- Determine the existing / baseline catchment size and catchment characteristics of the main stream on the Shannon LNG site (D1) and of the designated and protected wetland habitats.
- Determine the likelihood of any existing environmental trends / changes that are currently occurring at the Shannon LNG site.
- Determine any change to these catchments that is likely to occur as a result of the proposed Shannon LNG Terminal Development and identify potential impacts.
- Consider water quality changes resulting from the proposed Shannon LNG Terminal Development and its particular design features.
- Produce a clear conceptual hydrological / hydrogeological model for both the main stream (D1), where it crosses the Shannon LNG site, and for the designated and protected wetland habitats.
- Assess the total dataset acquired and evaluate the likely impacts of the proposed development on protected wetland habitats contained within the Shannon LNG site.
- If impacts are identified, consider measures that would prevent, mitigate or reduce the identified impact.
- Identify any residual impacts that would remain or arise from the mitigation measures identified/proposed.
- Present and report these findings in a clear and logical format that complies with EIS reporting requirements.

3. DEVELOPMENT DESCRIPTION

From an environmental standpoint, the key Shannon LNG Terminal Development infrastructure features are:

- The proposed development is a Liquefied Natural Gas (LNG) receiving terminal located at Tarbert -Ballylongford on the south side of the Shannon estuary.
- The site is enclosed within a landtake of 104 hectares.
- The project will comprise the construction of up to 4 LNG storage tanks, associated process equipment, a jetty to the east for LNG tankers and a second materials storage jetty in the west, administration buildings and two hardstand / construction laydown areas in the south and west of the site.
- Preliminary earthworks volume estimates for the construction of the plant will involve 1.1M m³ of cut and fill.
- The plant will be constructed on proposed elevated ground at c.19mOD Malin (NW part of footprint) and c.10mOD (NE part of footprint). Preliminary estimates indicate that this will involve raising the ground level in this part of the site by +12m from c.7mOD in the NW and +4m from c.6mOD in the NE respectively.
- It is currently proposed to construct an embankment across the main stream (D1) that flows through the site (located west of the plant footprint); upon which the access road will be located. Preliminary design indicates that the embankment will reach c.19mOD in elevation at the proposed stream crossing. This involves an increase in elevation of +14m from baseline c.5mOD level.
- The reason for this embankment is to create a pond inline with the stream to supply water for the construction works, hydrotesting of the tanks and firewater during the operation of the terminal. After exploring the option of groundwater resource development which has proved insufficient and unsustainable yield for project requirements, the stream has been identified as a possible water source and will have a capacity of c.150,000m³.

4. SITE DESCRIPTION

4.1 Location

The proposed Shannon LNG Terminal site is located at Irish national grid co-ordinates 102,000E 148,000N on the south side of the Shannon Estuary, approximately 4.5km west of Tarbert, and approximately 3.5km northeast of Ballylongford, County Kerry (Appendix A). Spatially the site occupies a total area of 104 hectares. The coastline on the northern side (between Ardmore Point and Knockfinglas Point) and on the northwestern side (between Knockfinglas Point and Richard's Rock) forms a total estuary frontage of approximately 1.96km, while to the southeast the site is bounded by the coast road and to the southwest by the local Kilcolgan Lower road.

Designated habitats lying adjacent to the site comprise part of both the Lower Shannon cSAC and the Ballylongford pNHA. They are located adjacent to the coastline and are either in the vicinity of the main stream (D1) running through the site (Coastal Lagoon and Salt Marsh) or immediately adjacent to the downstream section of D1 (e.g. Wet / Improved Agricultural Grassland, Reed and Large Sedge Swamp) (Appendix F2). The Coastal Lagoon habitat which is present on the site is listed as a Priority Habitat in Annex I of the Habitats Directive (Ref. 3).

The focus of MEL's impact assessment study at the Shannon LNG site is graphically portrayed in Appendix C2 (site hydrology), Appendix F2 (ecology) and Appendix G1 (subsurface site investigations and hydrogeology).

4.2 Topography

The topography forming the Shannon LNG site and its surroundings has been shaped by the Quaternary Midlandian and Munsterian glaciations and by subsequent post-glacial deposits and landforms, as detailed in the "Soils and Geology" section of the EIS. This topography consists of a series of multiple undulating hills oriented in a northwest to southeast direction, that fringe the main stream, D1 (Appendix C1). D1 where it crosses the site is aligned with a geological fault structure which is oriented northwest-southeast (labelled F1; Appendix B1).

It is within the valley of D1 that the designated wetland habitats of concern are located; with the exception of the coastal lagoon which is located outside of the main D1 catchment, approximately 170m to the southwest of where the D1 outlets to the Shannon Estuary. This coastal lagoon is contained within its own hydrological micro-catchment, which is separated from the D1 catchment by slightly higher ground with an elevation of approximately 5mOD elevation (Appendix C2 & F2). The low hills flanking the D1 valley reach elevations of c.12-21mOD, while the wetland areas immediately adjacent to D1 are between c.2-7mOD.

In the northeast part of the site, the topography is dominated by a sloping hillside, which reaches a maximum elevation of c.33mOD along the southern site boundary line. It slopes uniformly, with linear topographical contours, towards the Shannon Estuary, which forms the coastal boundary to the northwest. The site topography can be visualised in photos 1-4 in Appendix N.

4.3 Ecology

The Shannon LNG site is located adjacent to habitats which have been designated as candidate Special Areas of Conservation (cSAC) and proposed Natural Heritage Areas (pNHA).

The designated habitats adjacent to the Shannon LNG site comprise part of the Lower Shannon cSAC and the Ballylongford pNHA (Appendix F1 & F2) (Ref. 4). The habitats of particular concern are outlined in Table 1 and described according to their habitat codes as assigned by Fossitt 2000 (Ref. 5):

Fossitt	Fossitt Code	Fossitt	Description	Relation to	Relation to
Code	(Level 2)	Code		Lower	Ballylongford
(Level 1)		(Level 3)		Shannon cSAC	pNHA
C =	CW = Brackish	CW1	Lagoon & Saline Lakes	Wholly within	Wholly within
Coastland	Waters				
C =	CM = Salt	CM1	Lower Salt Marsh	Outside	Wholly within
Coastland	Marsh				
F=	FS = Swamps	FS1	Reed and Large	Wholly within	Wholly within
Freshwater			Sedge Swamps		
C =	CW = Brackish	CW2	Tidal River (lower	Wholly within	Wholly within
Coastland	Waters		section of D1)	(south bank)	(north bank)
F =	FW =	FW2	Depositing River	Wholly within	Wholly within
Freshwater	Watercourses		(middle and upper	-	(middle
			sections of D1)		section of D1)
G =	GM =	GM1	Marsh	Outside	Outside
Grassland &	Freshwater				
Marsh	Marsh				
G =	GS = Semi-	GS4/GA1	Wet Grassland /	Partially within	Outside
Grassland &	natural		Improved Agricultural	CSAC (1 large	
Marsh	Grassland		Grassland	field marginal to	
	GA = Improved			FS1)	
	Grassland				
G =	GS = Semi-	GS1 / GA1	Neutral Grassland /	Partially within	Partially within
Grassland &	natural		Improved Agricultural	CSAC (marginal	PNHA (2 fields
Marsh	Grassland		Grassland	to CW2)	marginal to
	GA = Improved				CM1 & CW1)
	Grassland				

Table 1: Habitats with conservation / designation status adjacent to the Shannon LNG site.

*Colour Shade illustrates Water Source:

Freshwater	Brackish Water	Brackish to Saline Water
Environment	Environment	Environment

* Note that the colour coding used in Table 1 relates to the different surface and groundwater types that sustain each habitat, and which are discussed in detail in Section 4.5.5.

The most important of these habitats is the **lagoon (CW1)** (cSAC & pNHA) (Appendix N, Photos 4, 5 and 6), which is a **priority habitat (coastal lagoons; 1150*)** and therefore of high conservation status under the EU Habitats Directive. It is characterised by roughly half open water toward the seaward side and half reed-dominated vegetation on the landward side. The lagoon is separated from the Shannon Estuary by a barrier beach composed of shingle, whose top elevation is slightly above high spring tide level. It is evident that wave overtopping of this barrier beach provides an intermittent source of saline water to the lagoon. In addition, what may become a more permanent connection to the sea, appears to be developing (naturally) in the northeast corner of the lagoon where accentuated marine erosion of the low cliff of glacial sands and gravels is creating a narrow channel through the coastal barrier. At present, the lagoon appears to be fed by seawater from the Shannon Estuary and by freshwater seepage from the landward (south-southeast) side; hence producing a mixed water environment (brackish) (Appendix I1 & K).

Other important habitats that require protection from direct and indirect hydrological / hydrogeological impact by the proposed development are the freshwater **reed and large sedge swamp (FS1)** (Appendix N, Photos 7 and 8), which occurs along the northern, low elevation boundary of the main stream (D1). This area is protected under cSAC and pNHA designation. The **tidal river (CW2)** (Appendix N, Photo 9), which occupies the lower section of D1 and **depositing river (FW2)** which occupies the remainder of D1 within the site boundary is also protected under both cSAC and / or pNHA designation, depending on location along the stream.

The third habitat of particular significance is the **lower salt marsh (CM1)** (Appendix N, Photo 10 and 11), that occurs between the lagoon (CW1) and the tidal river (CW2). This is protected under pNHA designation and is not part of the Lower Shannon cSAC.

Marginal habitats that occur within cSAC / pNHA designations are those of improved agricultural grassland (GA1) and wet grassland (GS4). These habitats are less significant in terms of their intrinsic conservation value, compared to the habitats outlined above; but they are very important in providing a buffer to hydrological / hydrogeological impacts on the more sensitive habitats that include priority habitats.

From Table 1 above, five of the habitats identified occur in freshwater environments, while two are mixed / brackish water environments, and one is a brackish / saline environment.

4.4 Geology

4.4.1 Bedrock Geology

The bedrock geology at the study site is discussed in the Geological Survey of Ireland (GSI) publication entitled "Geology of the Shannon Estuary" (Ref. 6). The 1:100,000 scale bedrock geology map of the area (Sheet 17) indicates that the study site is underlain by the Upper Carboniferous (Namurian) aged **Shannon**

Group (SHG). This is the only formation that underlies the proposed development site. The Shannon Group is undifferentiated and poorly mapped due to limited exposure in North Kerry. It consists of sandstone, siltstone, and mudstone and in places shale, and is dominated by turbidite sequences (rock sequences which fine upwards in cycles).

IGSL has provided site specific data on bedrock geology from dynamic probes, trial pits and coreholes for the northeast of the site for the proposed terminarl plant footprint. Results from these site investigations reveals fine grained Sandstone interbedded with argillaceous (siltstone and mudstone) bands. Sandstone and siltstone / mudstone at depth, is fresh to slightly weathered with variable fracture spacing depending on borehole location. Some borehole logs record iron oxide staining, indicating groundwater flow. Moderately weathered "rockhead" (top of bedrock) ranges from 0.5-0.6m thickness based on borehole logs.

MEL's BR Series investigations indicate the following with regard to bedrock geology in the west of the site proximal to the cSAC and pNHA areas (borehole logs of these investigations are presented in Appendix O1):

- The bedrock in the west of the site is predominantly a light to dark grey medium to fine grained SANDSTONE, with interbedding of siltstone and mudstone at the majority of the MEL BR Series.
 BR-1, BR-2, BR-3, BR-4, BR-8, BR-9 and BR-10 returned a Sandstone dominated lithology with occasional beds of Siltstone / Mudstone occurring at c.7-10m depth below ground level.
- BR-5, BR-6, BR-7 and BR-11 indicate a finer grained lithology dominated by dark grey SILTSTONE.
- Percentage weathering and associated iron oxide discolouration has been noted during drilling. The bedrock was found to be generally unweathered with the exception of BR-1 where a high degree of weathering of returned rock fragments was observed (c.50-80% of returns), BR-7 with moderately weathered returns (c.20-50%) and BR-4 with slightly weathered returns (c.2-10%). These boreholes are located close to D1, with BR-4 and BR-7 located along the mapped F1 fault structure (Appendix B1).
- BR-1 is located adjacent to a waterlogged area (Appendix N, Photo 15), which may be indicative of high water table and subsurface saturation, and may in turn account for the high degree of weathering noted.

A number of non-active faults have been mapped during the course of this environmental impact study, the full details of which are provided in Chapter 13 of Volume 2 of the EIS. Of the six (6) faults identified and illustrated in Appendix B1, two faults have significance for the hydrological and hydrogeological study of the cSAC and pNHA habitats. These faults have been labelled F1 and F2 and are described as follows:

F1 is the primary fault identified on the site. It transverses the centre of the site in a southeast-northwest orientation (140°/320°) and extends beyond both landward and coastal boundaries of the proposed development. The main stream that occurs on the site, D1 manipulates this fault alignment for a distance of c.800m within the site boundary. MEL's investigations points BR-2, BR-4 and BR-7 have been located along or proximal to the mapped F1 fault in order to determine its significance as a groundwater conduit and therefore water source for the cSAC and pNHA habitats.

The results of these investigations indicate variable weathering and permeability of the upper bedrock along the alignment of F1 that is coincident with the D1 stream. BR-7 located downstream near the cSAC habitats indicates moderate to high weathering at 20-50%, while further upstream at BR-2, the upper sandstone bedrock is fresh with no evidence of weathering (Appendix O1). It is noted that BR-1 (which is highly weathered) is located upstream on D1 and is offset from the F1 alignment (Appendix B1).

F2 is the second longest fault identified on the site and it runs essentially parallel to F1 for a distance of c.800m before changing to a western direction and truncating against F1 c.100m from the coastline. This fault is also significant for the protected habitats, in so far as F1 coincides with the northern boundary of the Reed & Large Swamp (FS1) habitat, and therefore it is a potential groundwater conduit and therefore water source for this area (Section 4.5.5). MEL's investigation points BR-6, BR-8, BR-9 and BR-11 have been located along and proximal to the mapped F2 fault. The results of these investigations indicate a fresh sandstone and in places mixed sandstone and siltstone sequence, with no evidence of weathering (Appendix O1).

Piezometer nests were installed in all the MEL BR Series in order to provide hydraulic information on the vertical and horizontal flow potential of groundwater along and proximal to F1 and F2, the results of which are discussed in Section 4.5.7 and 4.5.8.

4.4.2 Soils and Subsoils

The Environmental Protection Agency (EPA) / Teagasc Soils and Subsoils of Ireland database (Ref. 2) indicates that the site is underlain by the following subsoil types (Appendix B2):

- Glacial till derived from (Namurian) Shales and Sandstones is the main subsoil type that occurs at the site (TNSSs)
- Undifferentiated alluvium occurs along the stream D1 and underlying the reed and large sedge swamps adjacent to D1 (A).
- Bedrock outcrop and subcrop occurs along and proximal to the coastline and is likely to be associated with cliff and wave cut platform exposure (Rck).

The subsoils at the site are comprised of Munsterian (Quaternary Age) basal lodgement till (Lower Till) which is overlain by Midlandian (Quaternary Age) morainic deposits (Upper Till) that are less well consolidated than the lower lodgement till (see Soils and Geology Section of the EIS).

MEL's subsurface investigations (BR-Series) were carried out at the periphery of the cSAC and pNHA designated wetland areas as detailed in Section 2.2 and were positioned to obtain maximum hydrogeological data for interpretation and impact assessment. MEL's geological logs (BR-Series) are provided in Appendix O1, with spatial locations for the BR Series shown in Appendix G1. Preliminary "Subsoils" site investigations entailed percussion window sampling (PWS) and hand augering / gouge coring (GC) at selected locations

within and outside the cSAC and pNHA boundaries. Geological logs for the PWS and GC subsurface investigations are also provided in Appendix G1.

MEL's BR Series indicates the following with regard to the composition of subsoils within the investigated area:

- Medium-dark brown Boulder CLAY (Upper Till) occurs at BR-3, BR-4, BR-6, BR-8, BR-9, BR-10 and BR-11. This subsoil horizon varies in thickness from 2.0m at BR-3, BR-4, BR-6, BR-8 and BR-9; to 3.0m at BR-11 and a maximum thickness of 3.5m was noted at BR-10.
- At BR-1, BR-5 and BR-7 the Upper Till horizon is absent, presumably having been eroded away or not deposited in the first instance.
- The Upper Till is underlain by predominantly medium-dark grey Boulder CLAY (Lower Till) at BR-3, BR-4, BR-6, BR-8 and BR-9.
- The Lower Till horizon is absent at BR-10 and BR-11, most likely as a result of having been eroded during the subsequent glaciation.
- At BR-2 bedrock occurs close to the surface (at 1.0m depth), and neither of the two till horizons are present at this location.

The boulder clays (observed from Symmetrix drilling returns) are typically composed of c.40-70% grey or brown CLAY, with c.20% SAND component, c.20-40% GRAVEL, and grey sandstone pebbles and occasional cobbles and boulders.

Total depth of subsoils recorded from the BR Series investigations varies between 0.8m at BR-2 to a maximum of 10.0m recorded at BR-3. Two local geological fault structures occur on the site (see Appendix B1); one along the D1 valley (F1), and the other along the D2 valley to the northeast (F2). Adjacent to the F1 and F2 fault structures and within the respective valley features, subsoil thicknesses appear to be less than elsewhere; with thickness ranging between 0.8-3.1m (e.g. in BR-1, BR-2 and BR-11). PWS manual drilling was undertaken at a location (40m) southwest of BR-2 and 1.1m of light brown to grey CLAY was noted before refusal on presumed bedrock. In comparison, at other BR Series investigation points located on more elevated ground (e.g. BR-3, BR-8 and BR-6) the subsoils have greater thickness which varies from 3.5-10.0m. The relative thinness of the subsoils within the two fault-aligned valleys is consistent with localised valley erosion.

The majority of MEL's BR Series investigation points have been positioned proximal to the boundary of the cSAC / pNHA area (track mounted vehicles were restricted from entering the cSAC and pNHA areas). BR-5, BR-6, BR-8 and BR-10 are located to the northeast and north of the cSAC boundary. This part of the cSAC includes Reed and Large Sedge Swamp (FS1) and Wet grassland GS4 / Improved Agricultural Grasslands (GA1) as protected habitats. To the south, BR-4, BR-7 have been positioned proximal to D1 and associated Depositing River (FW2) habitat, while BR9 is located on the landward side of the lagoon and saline lake (CW1) habitat.

From these subsurface investigations, subsoil deposits <u>peripheral to the cSAC and pNHA areas</u> display the following characteristics (see Appendix O1):

- BR-5, BR-6, BR-8 and BR-10 in the north north east of the cSAC / pNHA have subsoil thicknesses ranging from 3.5m to 8.6m. The thickest deposits coincide with locations where both the Upper and Lower Till occur together (e.g. BR-6 with 8.6m and BR-8 with 5.0m of subsoil). In comparison at BR-5 subsoil is comprised of Lower Till only, while at BR-10 only the Upper Till horizon occurs. The absence of either horizon is presumed to be due to non-deposition or glacial or post-glacial erosion.
- Close to the downstream / western end of D1, BR-4 and BR-7 indicate a subsoil thickness of 4.1-4.7m. BR-4 is located on the hillside up-gradient of D1 on elevated ground, and subsoils here comprise both Upper and Lower Till horizons. Closer to D1, BR-7 indicates that only the Lower Till is present, suggesting that Upper Till was either not deposited here or has been subsequently been eroded by the D1 stream or perhaps due to glacio-fluvial action prior to the formation of D1.
- BR-9 adjacent to the Lagoon indicates subsoil depth of 5.6m, composed of 2.0m of Upper Till which is underlain by 3.6m of Lower Till.

In summary the results of MEL's BR Series investigations indicate the presence of subsoils of varying thickness (0.8m to a maximum of 10.0m) around the periphery of the cSAC / pNHA wetland areas. Subsoils are composed of brown and grey CLAY with substantial components of SAND (c.20%), GRAVEL (c.20-40%), pebbles (c.20-50%) and occasional cobbles and boulders. This subsoil type is characterised by poor drainage and low infiltration properties, with low permeability. As a result, the glacial till subsoils that occur at the site act as a hydraulically confining horizon above the underlying bedrock.

Hand held augering (using a "Gouge Corer") has been carried out adjacent to D1 within wet grassland (GS4) / improved agricultural grassland (GA1) (GC-13), within Reed and Large Sedge Swamp (FS1) habitat (GC-14), adjacent to the Lagoon and Saline Lake (CW1) (GC-16) and within the Lower Salt Marsh (CM1) (GC-17) (see Appendix G1 and O1).

Logging of subsoils and peat from these gouge core locations indicate the following:

- GC-13 in wet grassland (GS4) / improved agricultural grassland (GA1): mottled dark brown 'peaty' CLAY (peat and clay mixture) occurring to a depth of 1.0m, underlain by grey sandy CLAY of 'marly' composition to a depth of 1.36m (refusal on cobble / boulder at 1.36m). These deposits indicate possible lacustrine conditions with the formation of deeper marly clay deposits overlain by more recent peaty-clay material which is indicative of the present marshy, waterlogged and anaerobic conditions on the south side of D1 at this location.
- GC-14 in Reed and Large Sedge Swamp (FS1): medium to dark brown PEAT, with plant remains / rootlets and fibrous texture to a depth of 1.0m. Peat is underlain by light to dark grey sandy / silty CLAY ('marly' composition) to a depth of 1.35m (refusal on gravel / cobbles at 1.35m). This

underlying clay deposit is indicative of lacustrine conditions prior to development of the Sedge Swamp and subsequent peat formation.

- GC-16 adjacent to Lagoon and Saline Lake (CW1): Light brown to orange CLAY with iron oxide 'mottling', underlain by light grey 'marly' CLAY to 0.83m (refusal on cobble / boulder at 0.83m). The presence of 'marly' clay (probable lacustrine deposit) at the base indicates that the lagoon area may have once extended further inland beyond its current position, as is also suggested further seaward by the exposures of peat which is visible on the upper beach (backshore) to the northwest of the lagoon (Appendix N: Photos 13 & 14).
- GC-17 within Lower Salt Marsh (CM1): Dark brown PEAT with plant remains / rootlets with interbedded grey / brown silty CLAY, underlain by light to medium brown / grey sandy, gravelly CLAY to a depth of 1.80m (refusal on cobble / boulder at 1.80m). The subsoils at this location are indicative of prior anaerobic conditions with perhaps prolonged periods of water inundation (either freshwater or brackish water) with more substantial vegetative cover than is presently the case, resulting in the formation of c.1.0m of peat. The presence of a layer of CLAY from 0.13-0.20m between peat horizons indicates that the area was temporarily inundated by water / occupied by a water body for a period long enough to enable deposition of this clay horizon.

4.5 Hydrology

4.5.1 Catchments

River and stream catchments for the site and surrounding areas are illustrated in Appendix C1 and C2. Hydrologically, the Shannon LNG site is dominated by the **D1 Catchment** which occupies the central area of the site. Neighbouring catchments that have been identified are the **Shannon Estuary Sub-Catchment** in the extreme north and northeast of the site, and the **Kilcolgan Catchment** to the south of the site whose boundary crosses the site boundary over a limited area (Appendix C1). The D1 catchment occupies a total area of a little over 3 sq. km. Within the Shannon LNG site itself the D1 catchment covers an area of 0.703 sq. km. On a micro scale the **Lagoon Catchment** occurs as a separate hydrological unit and is illustrated in Appendix C2.

4.5.2 Drainage

MEL has carried out detailed mapping of site drainage during the preliminary "Site Walkover and Site Hydrochemical Survey" stage. Drainage patterns, drain dimensions, flow rates and surface water hydrochemistry have been examined in detail in the field.

Three significant drains have been identified within the Shannon LNG site. These are:

- D1 (main central stream)
- D2 (secondary drain north of D1)
- D3 (tertiary drain north of D1)

4.5.2.1 Primary Site Drainage (D1)

D1 Location and Context:

Of these three drains, D1 is by far the most significant in physical size, flow yield and location within the Shannon LNG site. D1 flows along a natural course throughout its on-site length. Flow direction is westerly upstream of the site boundary. Once the stream enters the site it bends and flows in a northwest direction through the centre of the site. At approximately 330m downstream of the site boundary D1 occupies the relatively steep valley of the F1 geological fault structure. The drain dimensions and principal characteristics of D1 are given in Table 2.

D1 Dimensions and Substrate Characteristics:

At the site boundary D1 flows in a westerly direction and is characterised by relatively high banks on both sides (c.1.5-2.0m), substantial bank width (c.3-4m), and a wide drainage channel (1.5m) underlain by hard bedrock substrate (Appendix N, Photo 16). Flow rate at SG-1 was measured as 15.29 l/sec on 24/04/07. Moving downstream, D1 bends to flow NW and continues to flow over hard substrate at SG-2 (Appendix N, Photo 17). The substrate type changes to moderately hard cobbles and gravel by the time D1 reaches SG-3 (Appendix N, Photo 18), and this substrate type continues until SG-4 (Appendix N, Photo 19) which is approximately 580m downstream of the eastern site boundary. Through this section D1 has a width of c.1.0m and water depth of 0.2-0.3m. At SG-5, D1 has increased to a width of 1.5m while depth of water is consistently at 0.2-0.3m (Appendix N, Photo 20).

Through the section of D1 which is flowing adjacent to the Reed and Large Sedge Swamp (FS1) area (between c.70m downstream of SG-5 to c.30m downstream of SG-8) the substrate becomes considerably softer with an increased clay and gravel component with occasional cobbles (Appendix N, Photo 21, 22 and 23). The banks are generally clay rich, unstable and overhanging (Appendix N, Photo 18) through this section, typically 0.5-1.0m high and 1.0-2.0m wide. Drain width is consistent compared with the upstream section at c.1.0-1.5m, while water depth is also similar at 0.2-0.3m.

D1 continues across soft clay substrate until beyond the Lower Salt Marsh (CM1) habitat and across the shingle and cobbles before discharging to the coast near SG-9 (Appendix N, Photo 9) where it eventually enters the Shannon Estuary. At this point D1 is characterised by its shallowest depth of c.0.1m and broadest width of 2.4m.

Drain ID	Associated Monitoring Point ID	Substrate Type	Discharge (I / sec)	Bank Height (m)	Bank Width (m)	Drain Width (m)	Water Depth (m)
D1	D1-SW-FG-SG1	Hard Bedrock with Cobbles / Boulders (Solid refusal)	15.29	1.5-2.0	3.0-4.0	1.5	0.3

Table 2: D1 (Primary Drainage) channel dimensions, substrate characteristics and flow rates*.

Arup Consulting Engineers

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

D1	D1-SW-FG-SG2	Hard Boulder, Cobble and Gravel / Sand	16.47	0.5	1.0	1.0	0.3
D1	D1-SW-FG-SG3	Moderately Hard Cobble and Gravel	13.91	0.5	1.0	0.7	0.3
D1	D1-SW-SG4	Moderately Hard Cobble and Gravel	N/app**	0.5	1.0	1.0	0.2
D1	D1-SW-FG-SG5	Hard Bedrock with Cobbles / Boulders (Solid refusal)	11.81	0.5-1.0	1.5	1.5	0.2-0.3
D1	D1-SW-FG-SG6	Soft Pebble / Gravel / Clay	15.22	0.5-1.0	1.0-1.5	1.0	0.2
D1	D1-SW-FG-SG7	Moderately Soft Cobble / Gravel / Sand	16.50	0.5-1.0	1.0	1.0	0.2
D1	D1-SW-SG8	Soft Clay	N/app	1.0	1.5-2.0	1.5	0.5
D1	D1-SW-SG9	Moderately Hard Cobble	N/app	N/app	N/app	2.4	0.1-0.2

*Note: Drainage channel dimensions were measured on 27-29/03/07, D1 flow gauging / discharge measurements were carried out by impeller flow meter on 23-24/04/07.

**N/app = Not Applicable.

D1 Flow Gauging / Discharge:

The flow rates along the D1 stream have been measured by MEL at SG-1, SG-2, SG-3, SG-5, SG-6 and SG-7. Flow gauge results from the first monitoring event (on the 23-24 April 2007), although carried out during a brief period of wet weather, generally reflect baseflow conditions associated with the sustained dry weather experienced during early April 2007.

An average discharge value for the six flow gauging points of 14.87 l/sec was recorded. Discharge values for D1 are given in Table 2 and illustrated graphically in Appendix L. The results indicate a maximum value of 16.5 l/sec recorded at SG-7 and a minimum value of 11.81 l/sec at SG-5. This flow gauging event, in combination with the examination of D1 substrate characteristics indicates that flow rate is increasing (D1 stream is gaining water by groundwater outflow) along the eastern upstream section between SG-1 and SG-2. Subsequently, as D1 flows over more permeable soft substrate or fractured bedrock in the F1 fault area, a decrease in flow rate is noted between SG-2 and SG5 (D1 stream is losing water into the ground). There is a measured decrease of -4.66 l/sec along this section. By the time D1 reaches SG-6 flow rate has increased again by 3.41 l/sec. This phenomenon may be explained by a combination of upwelling from groundwater contributing to D1 and by the input of additional surface water from the secondary drain (D2) which has an estimated flow rate of 2-3 l/sec (see Table 3). At SG-7 flow rate has again increased by 1.28 l/sec compared with SG-6 suggesting additional input from groundwater since no surface water subsidiary drainage inputs occur over this section of D1. It has not been possible to flow gauge at SG-9 due to the shallow depth of water and unsuitable cross section profile at this location (c.0.1m) making it unsuitable for the impeller flow gauging method.

Surface water discharge was measured in D2 and D3 on 21st May 2007. Discharge measurement points were selected at locations close to the confluences with D1 where maximum flow was noted to be occurring (i.e. at D2-SW5 and D3-SW2). Discharge values of 0.16 l/sec were recorded for D2 and 0.04 l/sec for D3.

These discharge rates are substantially reduced compared with visual estimates made in late March 2007. This change may be explained by the fact that February and March were relatively wet months compared with May 2007. Future monitoring of drainage discharge rates will enable more detailed interpretation of the degree of input of surface water flow into D1 by subsidiary drainage D2 and D3.

4.5.2.2 Secondary and Tertiary Site Drainage (D2 to D9):

Secondary and tertiary drainage at the Shannon LNG site has been mapped by MEL during the preliminary site walkover survey between 26th and 29th March 2007. A number of minor man-made drainage ditches are present on the site, which have been labelled D2 through to D9 (see Appendix C2). Drain dimensions, substrate characteristics and discharge estimates are given in Table 3.

- D2: arises to the east of the site boundary and enters D1 downstream of SG-5 (at 101790E, 148344N). It is classed as a secondary drain because of its considerable spatial coverage to the NE of D1 and because of its apparent contribution of surface water flow to D1 (discharge visually estimated at 2-3 l/sec). In a similar fashion to D1, the pathway of D2 manipulates the alignment of a local fault labelled F2 for a distance of c.610m, which for the most part runs parallel to F1 (Section 4.4.1; Appendix B1). D2 has a width of 0.5m and water depth at time of site survey of 0.1-0.2m.
- D3: occurs further east of D2 and arises outside the site boundary and enters the D1 stream c.60m downstream of SG-2 (at grid reference 102112E, 148056N). D3 occupies a man-made drainage ditch which runs along existing field boundaries. The D3 channel has a hard cobble substrate and typically has a bank height of 0.1m, bank width of 1.0-2.0m, drain width of c.0.4m, while water depth is c.0.1-0.2m (Appendix N, Photo 24). Visual estimate of flow in D3 indicate a discharge of c.1-2 l/sec.
- D4: is a minor seasonal drain which feeds into D2 (at grid reference 102043E, 148309N). During the preliminary site survey (29th March 2007) this drain was observed to originate from a spring discharge / seepage point (SP-SW5) located c.70m upstream of its confluence with D2. Water was noted to flow across soil / grass at the base of the field boundary and not to occupy a defined drainage channel (Appendix N, Photo 25). At this time D4 had an estimated discharge of c.0.5 l/sec. However, during the field monitoring event of 23rd to 26th April this area was noted to be dry.

Table 3:	Secondary	and	Tertiary	Drainage	channel	dimensions,	substrate	characteristics	and	flow
	rate estimat	tes in	late Ma	rch 2007*.						

Drain ID	Associated Monitoring Point ID	Substrate Type	Discharge (I / sec)	Bank Height (m)	Bank Width (m)	Drain Width (m)	Water Depth (m)
D2	D2-SW2	Soft Sand / Gravel	0.2 (Visual Estimate)	0.5	1.5	0.5	0.2

Arup Consulting Engineers

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

D2	D2-SW4	Moderately Hard Cobble	N/app**	1.5	1.0-2.0	0.5	0.1
D2	D2-SW5	Gravel	2-3 (Visual Estimate)	0.3	0.7	0.5	0.1
D3	D3-SW2	Hard Cobble	1-2 (Visual Estimate)	0.1	1.0-2.0	0.5	0.1
D4	N/app	Soil / Grass	0.5 (Visual Estimate)	N/app	N/app	N/app	N/app
D6	D6-SW2	Soft Clay	N/app	0.2	0.4	0.4	0.1-0.2

*Note: Drainage channel dimensions were measured on 27-29/04/07, flow rate visual estimates were made on 27-29/03/07. **N/app = Not Applicable.

- D5: originates from a waterlogged area west of SP-SW4, flows south-southwest and ponds substantially at D5-SW1 (Appendix N, Photo 26) and then flows southeast until it joins D2 at grid reference 101892 E, 148411N.
- D6: originates as diffuse drainage from the Reed and Large Sedge Swamp (FS1) habitat. It eventually forms a narrow streamlet at the western end of the swamp area, which flows west and joins D1 approximately 40m downstream of SG-8. D6 has a soft Clay substrate and has water depth of c.0.1-0.2m and drain width of c.0.4m (Appendix N, Photo 27).
- **D7:** feeds northwest into SP-SW2 and eventually into the lagoon. D7 flows along the field boundary on a seasonal basis. This drain contained water in late March 2007 during the initial site survey, but was dry in late April 2007 during the monitoring event.
- D8: flows northwest along a farm roadway on a seasonal basis. Flow discharges from SP-SW1 and generally occupies the southwest side of the roadway (Appendix N, Photo 32) until it reaches c.20m southeast of the beach. It then ponds at this point and possibly feeds into the lagoon to the northeast and also possibly into the smaller pond area to the southwest (i.e. adjacent to L2-SW1). It would appear that the flow in D8 is prevented from flowing into the sea due to the height of the cobble beach which blocks it, and causes water to pond around the vicinity of D8-SW2 (Appendix N, Photo 34).
- **D9:** flows seasonally northeast along a man-made ditch (field boundary) and into D1 adjacent to the location of SG-5. In March and April 2007 this drain contained water beneath dense grass growth but was not flowing visibly (Appendix N, Photo 28).

4.5.3 Springs

A number of springs have been mapped within the study area and are illustrated in Appendix G1. Photographs of these features are provided in Appendix N (Photos 29 to 34). These springs were identified during the field survey of 26th to 30th March 2007, after a period of wet weather. The three springs associated with the wetland areas adjacent to D1 generally occur in the northeast side of the study area (SP-

SW3, SP-SW4 and SP-SW5), while two spring discharges are associated with the coastal lagoon and saline lake (CW1) in the west (SP-SW1 and SP-SW2).

- **SP-SW1** occurs on the northwest side of the farm yard to the south of the lagoon and saline lake (CW1) (Appendix N, Photo 33) and drains seasonally along D8 toward the coast. This spring was flowing considerably in late March 2007 during the initial site survey, but was found to be dry in late April 2007 during the monitoring event.
- **SP-SW2** occurs at the eastern corner of the coastal lagoon and saline lake (CW1) at the base of D7 (Appendix N, Photo 35). Water depth here was noted to be c.0.2m depth in late March 2007 but had become dry when monitored in late April 2007.
- **SP-SW3** occurs in the north of the Reed and Large Sedge Swamp (FS1) area (Appendix N, Photo 31). This spring feeds the swamp area along with other groundwater seepages which occur along the northern and eastern boundary of the swamp, for example at SS-SW3 and SS-SW4. SP-SW3 is characterised by lush green vegetation on soft swampy ground underlain by a stony substrate base.
- **SP-SW4** was noted to have a water depth of c.0.3m in late March 2007. A dense mat of floating vegetation was noted adjacent to this point (Appendix N, Photo 29). An extensive area of marshy ground exists to the northeast and IGSL site investigation indicates that borehole BH-23 exhibits artesian groundwater conditions.
- **SP-SW5** discharges at the base of the field boundary and feeds into D4 (Appendix N, Photo 30). This spring was flowing in late March 2007 during the initial site survey, but was found to be dry in late April 2007 during the monitoring event.

4.5.4 Coastal Lagoon

The coastal lagoon and saline lake (CW1) (Appendix N, Photo 5) is located on the Shannon Estuary in the west of the site c.150m south of where D1 flows into the estuary, and covers an area of c.1.5ha of which c.0.2922ha is open water. It is separated from the sea by shingle bank, which at the time of the initial site survey (late March 2007), had a vertical elevation of c.0.5m (visual estimate) greater than the lagoon water level (Appendix N, Photo 6). Typically the normal high tide does not cross the upper beach, nor does it feed the lagoon on a regular basis. Inundation of the lagoon is limited to times of high spring tides, and would be augmented by wave overtopping. Dried seaweed is generally found along the uppermost section of this shingle bank indicating that inundation occurs occasionally. At the seaward side of the lagoon water depth was measured at c.0.4-0.8m (March – April 2007). Seepage of lagoon water seaward through the shingle bank was noted at the northern corner of the lagoon (adjacent to SG-10) during the initial site survey (Appendix N, Photo 36). The southeastern side of the lagoon is seasonally fed by the springs SP-SW1 and SW-SW2 and by D7 and D8 (Appendix G1). The input of both marine water and fresh water to the lagoon results in a brackish mixture of the two types of water. Discussion of the lagoon's chemistry is provided in Section 4.5.5.

4.5.5 Water Chemistry

MEL has undertaken detailed monitoring of groundwater and surface water chemistry (electrical conductivity, pH and temperature) at the Shannon LNG site in March and April 2007. This has consisted of initial monitoring of surface water and spring discharges during the preliminary site survey phase (26th to 29th March 2007), and a second event (23rd to 26th April 2007) to monitor surface waters, spring discharges and groundwater chemistry of the MEL BR-Series and IGSL BH-Series points. A comprehensive database has been compiled of water levels and chemistry for groundwater and surface water, and discharge flows for the main drain D1 (Appendix M1). At the time of preparation of this report, the hydrological assessment has been based on results obtained from a total of 48 surface water and 51 groundwater monitoring points. Reference is made to Appendix F2, I, J and M1 throughout this section.

4.5.5.1 Surface Water

Surface water quality was assessed from 48 monitoring points by measuring electrical conductivity, pH and temperature in the field. Along each of the drains identified above, as well as from spring discharges and standing water monitoring points (e.g. SS-SW1), these parameters were measured and geo-referenced for future monitoring. Monitoring IDs such as D1-SW2 and SP-SW1 for the drains and springs were given to measurement locations. Table 4 gives the ranges and averages in EC values recorded for surface waters across the site in late March and late April 2007.

Results of these measurements to date indicate the following with regard to surface water chemistry during the period investigated to date (March and April 2007):

Central Drain (D1):

- D1 is the central drain of the site and is the main focus of the present study and thus has the most chemistry monitoring points along its route within the site boundary (i.e. D1-SW1 to D1-SW3 and at each staff gauge location, i.e. 12 chemistry monitoring locations in total).
- The electrical conductivity values along D1 ranges from 357 to 721µS/cm. Average EC in D1 is 445µS/cm. The lowest value of electrical conductivity occurs at D1-SG6 adjacent to the Reed and Large Sedge Swamp (FS1) and the highest value was recorded at D1-SG9 adjacent to the coast. This elevated EC at SG-9 indicates that intrusion of saline water is occurring in the extreme downstream section of D1 near SG-9, but this incursion does not extend far upstream along D1, since EC at SG-8 is again low at an average of 429µS/cm.
- pH values recorded along D1 ranges from 6.64 to 8.30. Highest pH occurs at D1/SW3 (8.30) which is again located near the coast and reflects the influence of seawater (pH range of 7.5 to 8.4) while the lowest value is recorded at D1/SG1 (6.64) at the most upstream monitoring point location where D1 enters the site. Average pH recorded along D1 is 7.49.

Subsidiary Drainage (D2 to D9, not including D6):

- Subsidiary drainage at the site has a wide range in EC of 224 to 811µS/cm. The average EC in these drains is 464µS/cm. In general the following average values occur in the various drains; D2 477µS/cm, D3 345µS/cm, (D4 not measured) D5 291µS/cm, (D6 discussed separately below), (D7 not measured), D8 810µS/cm, D9 361µS/cm. Hence, drains with average EC <400µS/cm are D3, D5 and D9. D3 and D9 most likely contain a significant surface water component, while D2 (average EC >400µS/cm) may experience a groundwater input through fractured bedrock associated with the F2 geological fault structure (see Section 4.4.1). D8 high EC values (810µS/cm average) may be explained by proximity to the coast and the possible accumulations of airborne salts blown in from the Shannon Estuary, or by high EC water discharging from SP-SW1 upstream (e.g. EC here was 1,065µS/cm in late March 2007).
- pH values in subsidiary drainage range from 5.90 to 7.57pH, with an average of 7.02 units between March and April 2007.

Surface Water Sub-Category Type	EC Min - Max (µS/cm)	EC Average (µS/cm)	pH Min - Max (pH units)	pH Average (pH units)
Central Drain (D1)	357 to 721	445	6.64 to 8.30	7.49
Subsidiary Drainage (D2-D9 not incl. D6)	224 to 811	464	5.90 to 7.57	7.02
Spring Discharge (SP)	266 to 1,065	465	6.05 to 7.98	6.93
Coastal Lagoon (L1 & L2)	303 to 1,624	876	6.70 to 9.91	8.13
Lower Salt Marsh (SM)	>20,000	>20,000	5.20 to 7.80	6.57
Reed and Large Sedge Swamp (incl D6) (SS)	258 to 5,680	1695	5.67 to 7.75	7.01

Table 4: Electrical Conductivity and pH maximum, minimum and average values for various subcategories of surface water type (March and April 2007).

Spring Discharge:

- Spring discharge points show a wide range in measured EC values across the site (recorded between March and April 2007), from 266µS/cm (at SP-SW4) to 1,065µS/cm (at SP-SW1). SP-SW1 indicates the highest EC among the spring discharge points. In late April 2007 SP-SW2 and SP-SW5 were found to be dry.
- Spring discharge monitoring to date indicates a range of pH of 6.05 to 7.98 pH units with an average of 6.93.

Coastal Lagoon:

The coastal lagoon is characterised by high EC (brackish water type) with a range of values between 303µS/cm (freshwater) and 1,624µS/cm (brackish). Highest values occur on the coastal side of the lagoon around SG-10, SG-11 and L1-SW1 (i.e. >1,000µS/cm). The lowest recorded value (303µS/cm) was that taken at the inland monitoring point of SG-12 in late March 2007 as a deep lagoon base sample from a depth of c.0.3m. A shallow surface sample taken at the same

monitoring point and on the same date recorded an EC value of 559µS/cm. This difference in EC (range of +/-256µS/cm) between deep and shallow lagoon samples is largely a function of temperature difference (EC increases by 1.7% per 1°C change in temperature)

• pH values in the lagoon range from 6.70 to 9.91 pH units with an average of 8.13.

Lower Salt Marsh:

- Water hydrochemistry has been measured in March and April 2007 in the Lower Salt Marsh habitat from standing water at SM-SW1 and SM-SW2. On each occasion EC was >20,000µS/cm indicating considerable salt water incursion and influence of saline marine water throughout this area adjacent to D1. This high EC standing water (Lower Salt Marsh) is noted to extend up to at least the area of SG-8. However, in comparison the adjacent D1 surface water has an EC of only 423µS/cm. The low-lying areas adjacent to D1, i.e. Lower Salt Marsh, Sedge Swamp and Marsh area on the southwest side regularly experience inundation by sea water during high spring tides when standing water of up to c.0.5m occurs over this area. When high spring tide retreats water levels fall as sea water drains out again along D1, D6 and through the lower salt marsh area. (Per comm. Micheal O'Connor, local land tenant). This would explain the high EC values recorded in the lower salt marsh area, since residual salts would remain after the tide has gone out. Under these circumstances, salts would also tend to accumulate over time within the clay soils.
- pH values in the lower salt marsh range widely from 5.20 to 7.80 pH units.

Reed and Large Sedge Swamp (incl D6):

- The Sedge Swamp area displayed a wide range of EC values between 258 to 5680µS/cm, and with an overall average EC of 1695µS/cm.
- Standing water in the Sedge Swamp area has been noted along its peripheral north and northeast boundary at SS-SW3 and SS-SW4, where EC values are typically lower than the aforementioned average. Here the average EC value is 338µS/cm and represent seepage of groundwater along the line of the F2 geological fault structure, which coincides locally with a notable break in slope.
- SS-SW1 was sampled from the mid-west section of the Sedge Swamp area where EC values are typically high at c.1,900-2,400µS/cm. This elevated EC indicates sea water influence either through incursion along the F1 fault structure or as residual salts left after high spring tide incursions. D6, which flows through this western section of the Sedge Swamp, also exhibits elevated EC with values between 1,516-5,680µS/cm.
- At SS-SW2, closer to the centre of the Sedge Swamp, EC values are more similar to those recorded on the periphery of this area (average 341µS/cm). This change in EC across the swamp suggests that there is a spatial change in the primary influence on water type across this area. In the west there is a stronger marine influence with sea water incursion and thus a higher EC, creating a brackish water environment. On the eastern side there is greater flushing by groundwater (through seepage and spring discharge), and by surface water (rainfall runoff and

infiltration). This results in dilution and removal of salts which may occasionally be introduced to the system during high spring tide flooding events.

• pH values in the Sedge Swamp range from 5.67 to 7.75 pH units.

4.5.5.2 Groundwater

Groundwater chemistry was assessed in the field by extracting water from boreholes and installed piezometer nests / couples and by measuring indicator parameters, such as electrical conductivity (EC), pH and temperature. To date, one round of groundwater chemistry monitoring has been carried out for the BR-Series and the BH-Series installation (during the period 23rd to 26th April 2007). The results of hydrochemical testing for groundwater are discussed below under various hydrological and lithological groups and are also summarised in Table 5. For the purpose of categorisation, groundwater hydrochemistry has been subdivided according to subsoil and bedrock lithology type, i.e. CLAY subsoils (PH1 and P3), CLAY subsoils / weathered BEDROCK interface (P2), CLAY subsoils / BEDROCK (fresh) interface (PH1, P3 and P2), weathered BEDROCK (P3) and BEDROCK (fresh) (PH1, P3, P2 & P1). Details of nested piezometer installations in the BR-Series coreholes are given in Appendix F2. The data generally indicates a wide range in EC values within each lithology type. However, average EC groundwater values for both subsoil (588µS/cm), and bedrock (578µS/cm) were very similar based on recordings made in late April 2007. Groundwater pH average values in bedrock and subsoils show a narrow variation from c.6.40 to 6.90 pH units. Future monitoring will provide additional information enabling more detailed interpretation of the groundwater hydrochemistry at the site.

Subsoils Unit:

- The groundwater hydrochemistry of the subsoil Clay unit has been monitored in PH1 and P3 installations in the BR-Series. A range of EC values from 268 to 867µS/cm, with an average of 620µS/cm, was recorded for this unit in late April 2007. pH in the subsoils was 6.05 to 7.23 pH units with an average of 6.88 pH units in late April 2007.
- EC values recorded in late April 2007 from phreatic BR-Series installations in clay subsoils have been spatially illustrated in Appendix K. The available data indicates a phreatic groundwater EC of c.600-900µS/cm generally across the site, with the exception of BR-5 and BR-11 (c.250-400µS/cm) which are located in the northeast part of the study area near D2.
- The Subsoils / Bedrock Interface has been monitored by piezometric and phreatic installations in the BR-Series points. The results indicate a range in EC of 314 to 928µS/cm and an average of 556µS/cm. pH range is 5.11 to 7.35 pH units with an average of 6.42 pH units.

Table 5: Groundwater electrical conductivity and pH maximum, minimum and average values forvarious categories of subsurface lithology (April 2007).

Arup Consulting Engineers

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

Groundwater Sub-Category Type (BR-Series Installations)	EC Min - Max (µS/cm)	EC Average (µS/cm)	pH Min - Max (pH units)	pH Average (pH units)
Subsoil – CLAY	268 to 867	620	6.05 to 7.23	6.88
Subsoil - CLAY / BEDROCK	314 to 928	556	5.11 to 7.35	6.42
BEDROCK – Weathered	409 to 652	503	6.26 to 7.02	6.63
BEDROCK – Unweathered	217 to 1019	674	5.50 to 7.76	6.86

Bedrock Unit:

- The groundwater hydrochemistry of the weathered Bedrock unit has been monitored in BR-1 and BR-7. A range in EC values of 409 to 652µS/cm and an average of 503µS/cm was recorded for this unit in late April 2007. pH in the weathered bedrock was 6.26 to 7.02 pH units with an average of 6.63 pH units in late April 2007.
- The groundwater hydrochemistry of the un-weathered Bedrock unit has been monitored generally by means of 2 or 3 piezometer installations in the BR-Series points. A wide range in EC values from 217 to 1019µS/cm, with an average of 674µS/cm, was recorded for this unit in late April 2007. pH in the un-weathered bedrock was 5.50 to 7.76 pH units, with an average of 6.86 pH units in late April 2007.

Hydrochemistry of BH Series:

- BH Series groundwater hydrochemistry has been monitored by MEL in late April 2007 at BR-3, BR-5, BR-13, BR-19 and BR-23. These borehole standpipes cover both bedrock and bedrock / subsoil interface units in the northeast of the site (see Appendix E). BH-14 and BH-20 were found to be dry in late April 2007.
- Bedrock / subsoils monitoring points have EC average of 405µS/cm and pH average of 5.57 pH units.
- Bedrock hydrochemistry indicates an average EC value of 399µS/cm and pH average of 5.92 pH units.
- The results indicate that across this area of the site bedrock and subsoils units display similar EC and pH values.

Analytical Hydrochemical Testing of BH Series:

Groundwater samples were taken from a number of the BH-Series standpipes for laboratory water quality analysis in January 2007. Samples were taken from from BH-5, BH-10, BH-14, BH-20 and BH-23, and from PW1 (which is located c.60m south of BH-23). Analytical hydrochemistry results are given in Appendix L. In terms of groundwater quality, the analytical results have been compared with S.I. No. 106 of 2007 (Drinking Water Regulations) (Ref. 7) and the EPA Interim Guideline Values for groundwater (Ref. 8). Values in excess of SI 106 maximum admissible concentrations (MAC values) and / or EPA interim guideline values (IGV's) have been highlighted in yellow in Appendix L. The results indicate the following:

• Total alkalinity values are low at between 40-80mg/l, as would be expected for silicate base sandstone bedrock.

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

- EC values for the samples show an average of 358µS/cm, which compares with the average value of 402µS/cm recorded in the BH installations by MEL in late April 2007.
- pH is just above neutral, with an average of 7.72 pH units, which is higher than the slightly acidic average value of 5.71 pH units recorded in the BH installations by MEL in late April 2007.
- Both chloride and sodium values are low with a range of 40-54mg/l and 22-40mg/l, respectively, which are well below the MAC and IGV limits.
- The nitrate value at BH-5 (33.8mg/l) exceeds the EPA's IGV but is below the SI 106 MAC limit for drinking waters.
- Orthophosphate levels at each of the four boreholes sampled for this parameter are above the EPA's IGV of 0.03mg/l.
- The presence of elevated nitrates and phosphates in combination is indicative of fertilisers and most likely the result of agricultural activity in this area.

4.5.6 Water Levels

MEL has installed an extensive groundwater monitoring network comprising nested piezometric / phreatic installations as part of its BR-Series site investigations, in order to evaluate water levels and piezometric pressures and their variations across the site. The results of initial baseline monitoring at the site for both the free water table (phreatic surface) and the piezometric surface are summarised below and shown in Appendix J. Water levels are given in metres above ordnance datum Malin (mOD Malin) and, to date one round of water level monitoring has been undertaken, in late April 2007. Temporal changes in water level will become apparent once future rounds of water level monitoring have taken place. Reference is made to Appendices G, H and J throughout this section.

Phreatic Water Levels:

- Phreatic water levels beneath the site are strongly controlled by the presence of the D1 stream and by the overall topography, as illustrated in Appendix H1. Groundwater flow direction is predominantly towards the northwest, generally following the ground slope, and thus towards D1 and the Shannon Estuary.
- In the eastern part of the site phreatic groundwater level was recorded at 14.69mOD in BR-2, in late April 2007. Phreatic water levels decline, with the topographical contours, in a northwesterly direction, varying from 1.84mOD at GC17-PH1 to c.5.1mOD at BR10-PH1, which is located on slightly higher ground to the northeast of D1.
- "Composite Standpipe" water levels in the BH Series are 5.95mOD at BH-19 in the far northeast and between 11.49mOD and 12.28mOD on elevated ground in the west of the area of the BH Series monitoring points.

Piezometric Water Levels:

Piezometric water levels have been monitored in the BR-Series (P1, P2 and P3) nested piezometer installations on the periphery of the wetland cSAC and pNHA areas (see Appendix E and F2) in April 2007.

- The piezometric surface is less strongly influenced by surface water drainage compared to the phreatic water table. The contouring in Appendix H1 and H2 illustrate this for April 2007. Piezometric contours in Appendix H2 indicate that flow direction is to the northwest.
- The deepest piezometers are the P1 installations in the sandstone / siltstone bedrock. These
 indicate a range in piezometric elevation from 14.76 15.07mOD at BR-2 and BR-1, respectively,
 in the east of the study area; to 2.33 3.25mOD in BR-10 and BR-9, respectively, in the west of
 the study area.
- The mid-level piezometers are the P2 installations in subsoils and shallow sandstone / siltstone bedrock. These indicate a range in piezometric elevation from 14.49 15.07mOD at BR-2 and BR-1 respectively, in the east of the study area; to 2.32 3.22mOD in BR-10 and BR-9 respectively in the west of the study area.
- The shallowest piezometers are the P3 installations in the upper sandstone / siltstone bedrock.
 These indicate a range in piezometric elevation of 15.17mOD at BR-1 in the east of the study area; to 2.30 3.26mOD in BR-10 and BR-9, respectively, in the west of the study area.

4.5.7 Vertical Hydraulic Gradients

Upward vertical groundwater movement occurs when piezometric levels are higher than phreatic levels, while downward vertical groundwater movement occurs when piezometric levels are lower than phreatic levels. Upward discharge of groundwater at the surface (in the form of upwelling springs and seepages) signifying artesian conditions only occurs when piezometric levels are above the ground surface and when the phreatic level is at ground surface. In some places persistent downward recharge or upward discharge may occur throughout the year, while in other places the regime may changes on a seasonal basis. These changeable zones are named intermediate zones. In general, in intermediate zones, upward discharge occurs in winter and downward recharge occurs in summer.

Future monitoring at the site will enable seasonal variations in vertical hydraulic gradients to be studied in more detail. To date, one set of water level monitoring data from late April 2007 is available for interpretation, so temporal trends cannot yet be established. Vertical hydraulic gradients have been identified for the BR-Series nested piezometer / phreatic installations on the periphery of the wetland (see Appendix H3) and provide valuable information on the role of groundwater seepages in maintaining these wetland systems. The following summary interpretations are based on piezometric and phreatic water level data from late April 2007 (see Appendix H3):

- Upward hydraulic gradients occur at BR-8 and BR-10.
- Decoupled upward hydraulic gradient exists at BR-4. The P2 installations here indicate that groundwater is present under pressure along the subsoil / bedrock interface.

- Upward hydraulic gradient exists in the P2 and P3 installations at BR-6. The P2 and P3 at BR-6 are installed at the subsoil / bedrock interface and in the lower subsoil horizon respectively. The elevation of the piezometric surface here indicates that groundwater is contained under pressure along the subsoil / bedrock interface and in the lower subsoil horizon.
- Decoupled hydraulic gradient occurs at BR-9. There is a downward gradient between the PH1, P3 and P2 installations (i.e. from clay subsoils down to the shallow bedrock) and there is an upward gradient in the deeper bedrock (at 7.0-8.0mbGL) P1 installation.
- Downward hydraulic gradients exist at BR-1, BR-3, BR-7 and BR-11.

4.5.8 Horizontal Hydraulic Gradients

Horizontal hydraulic gradients generally occur at right angles to the topographical contours, with groundwater flow taking place in the direction of ground slope. In uniform permeability materials the rate of groundwater flow is generally a function of the ground slope, as evidenced from the relative distance between groundwater contour lines in Appendix H1 and H2. Horizontal gradients are relatively greater in the overburden and mineral soils on the more elevated and steeply sloping northeastern parts of the site, compared with those in the lower and flatter areas peripheral to the wetlands in the northwest. Clay overburden areas on the periphery of the low-lying wetlands will however have a relatively low hydraulic conductivity resulting in confinement of deeper groundwater and the possibility of localised spring discharges at the surface should (e.g. SP-SW5 and SP-SW3), where piezometric pressure become artesian. Such springs and seepages provide sources of recharge to the wetland system. Directionally, phreatic and piezometric groundwater flow is toward D1 as indicated by the contour maps in Appendix H1 and H2.

4.5.9 Surface Water Levels

Surface water levels have been recorded in the Lagoon at four (4) staff gauge installations (SG-10, SG-11, SG-12 and SG-13), and in D1 at nine (9) staff gauge installations; starting upstream at SG-1 near the eastern site boundary and through to SG-9 close to the outlet of D1 into the Shannon Estuary (see Appendix G1). Surface water levels for late March and April 2007 are given in Appendix J. To date, the levelling results indicates a decrease in water level in both the lagoon (drop in level of between c.0.01 and 0.2m) and in D1 (drop in level of between c.0.01 and 0.1m) during the period late March to late April 2007 (see Appendix M, Photo 37 to 40, which illustrate falling water levels in the Lagoon).

5. POTENTIAL IMPACTS

Probable or likely impacts by the proposed Shannon LNG Terminal development on the sensitive and protected wetland habitats of the Special Areas of Conservation c(SAC) and proposed National Heritage Areas p(NHA)), in the absence of adequate mitigation measures, are detailed in this section.

1. Groundwater Dewatering by Cuts

The proposed terminal plant will be located on sloping ground towards the Shannon Estuary Coastline. The sloping baseline topography necessitates removal of earth materials which will include subsoils as well as upper bedrock in the deeper cut locations. The deepest cuts will occur along the southern and inland boundary of the terminal plant coincident with higher elevation terrain. The maximum cut depth is anticipated to be at -13mbgl, upslope of Tank No. 1.

Evaluation of the significance of the cuts into the subsoils and upper bedrock confirms that the majority of the excavations occur within the Shannon Estuary Sub-catchment. Only the western and southwester part of the terminal plant which contains a designated landuse of "Future Equipment Area" is partially located within the D1 catchment. This part of the site will generally be built up with minimum excavation required for foundations.

Evaluation of the groundwater flow regime (Appendix H1 and H2), the hydrogeological properties of the subsoils and bedrock at the site, the different hydrological catchments in which the terminal plant and the wetland habitats occur, as well as the buffer distance of >150m at which the wetland habitats are located from the terminal plant indicates that the permanent excavation cuts, the majority of which will be backfilled to near present topographical levels, will have an imperceptible impact on the groundwater recharge to the designated wetlands.

2. Groundwater Diversion by Fills

In those areas where excavations are proposed, there will be a backfill with suitable bearing materials in order to support the structures proposed for the development. Fill materials such as broken rock and "clause 804" are characterised by higher permeability than the in-situ subsoils. The bulk emplacement of higher permeability materials can provide preferential pathways for groundwater flow which in turn cause local diversions of "inflections" of the groundwater flow paths and thus impacts on the flow equipotentials. Generally however, engineering design is applied to ensure that the majority of such foundation materials are unsaturated.

The hydraulic impact arising from groundwater diversion by fills is considered to be an imperceptible impact on the hydrogeological functioning of the protected wetlands.

3. Reduction in Water Supply to Wetland by Embankment

The proposed embankment and in-line ponding of D1 upstream of SG4 and the cSAC habitats boundary has the potential to reduce water flow in D1, which in turn may reduce the supply of freshwater to peripheral wetland habitats, the most significant of which are the Reed and Large Sedge Swamp (FS1) located along the lower reaches of D1 (Appendix F2). Extensive site investigations and monitoring of groundwater and surface water in the region of FS1 and associated habitats indicates that the FS1 is dependent on groundwater, freshwater runoff form adjacent lands, as well as periodic inundation by D1.

Evaluation of the hydrological and hydrogeological data acquired, indicates that the proposed embankment has the potential to have a moderate negative, long term impact on the freshwater wetland habitats in which FS1 is the most sensitive due to its location. Mitigation measures have been applied to the design of the embankment in order to reduce this impact to an imperceptible impact or potentially into a positive impact, the details of which are outlined in Section 6.

4. Release of Suspended Solids to Surface Water

During the extraction, stockpiling, and transport of earth materials for the construction phase of the development, it is likely that a high content of suspended solids will be entrained by sustained rainfall and surface water runoff.

Runoff of suspended solids will add turbidity to the surface water which can clog fish gills, smother spawning grounds, reduce light penetration for flora growth, add bacteria and algae to the water. Nutrients that are associated with the solids (inorganic nutrients such as phosphorus and organic such as hydrocarbons, sewage if present) can lead to eutrophication of the water environment and eventually to fish-kills due to lowering of oxygen supply.

For these reasons and in the context of protecting the water quality that surrounds and supplies the wetland complex, it is critical that water runoff from the construction phase of the development is controlled and attenuated before discharging to the existing drainage network. This is considered to be a short-term, temporary but significant negative impact. However, with appropriate environmental engineering controls and measures, this impact can be reduced to within water quality regulatory limits.

5. Risk of Pollution from Hydrocarbons Leakage

The majority of plant equipment used for construction phase will run on hydrocarbons (aside from direct electricity connection of non-mobile equipment). This poses the potential for spillage and leakage of hydrocarbons from plant equipment and associated refuelling locations during the construction phase of this project. An accidental hydrocarbon spillage would have a significant negative impact on both groundwater and surface water quality at and down-gradient of the site, which if it reached the wetland complex will have seriously adverse consequences.

Evaluation of the hydrogeological properties of the Shannon LNG site confirms that surface water pathways are the main risk posed to D1 and associated wetland habitats receptor. Release of hydrocarbons to the both the surface water and groundwater environment (in context of Water Framework Directive) is a significant negative impact during the construction and to a lesser degree the operation phase of the development.

6. Other Potential Pollutants

Other potential pollutants that may impact on groundwater and surface water quality as a function of excavation works and associated with entrained suspended solids from subsoils and bedrock are:

- Inorganic nutrients such as nitrogen and phosphorus compounds (if present in excavated sediment).
- Bacteriological contamination arising from availability of organic nutrients (e.g. livestock waste on acrotelm peat).
- Trace metals that may naturally be present and therefore potentially released from Dalradian metasediments (e.g. arsenic, chromium, copper, lead).

These contaminants are less likely to be introduced to the water environment, which in turn can impact on the water quality of the wetlands, and as a result are considered to be a minor to moderate negative impact.
6. MITIGATION MEASURES

1. Groundwater Dewatering by Cuts

Proposed excavations and cuts for the proposed scheme will have an imperceptible impact on the groundwater recharge to the designated wetlands, therefore no mitigation is required.

2. Groundwater Diversion by Fills

The hydraulic impact arising from groundwater diversion by fills will have an imperceptible impact on the hydrogeological functioning of the protected wetlands, therefore not mitigation is required.

3. Reduction in Water Supply to Wetland by Embankment

In order to mitigate the potentially moderate negative permanent impact by the proposed embankment structure and in-line pond on the water supply to D1 and downstream associated habitats, the embankment has been designed to include the following criteria:

- An outflow drain will be installed to provide a minimum discharge rate of 10l/s which has been calculated (See Chapter 13), as well as empirically provide to be slightly greater than the baseflow discharge rate in D1 (Section 4.5.2).
- The embankment foundation level will be 1-2m below the ground level, and will avoid interception of the underlying bedrock aquifer.
- The embankment and the entire area of the pond will be lined in order to hold the water within the pond with a maximum leakage rate of 2l/s.

The above design criteria will (a) maintain baseflow to D1, (b) prevent groundwater "flushing" of waters to the downstream habitats, and (c) avoid interception or disturbance to the groundwater flow regime.

These design measures above including will reduce the impact to an imperceptible level, and potentially depending on management of water budgets this impact can provide positive results for downstream habitats.

4. Release of Suspended Solids to Surface Water

In order to mitigate the impact posed by release of suspended solids to the surface water environment, the following mitigation measures are recommended:

(a) The drainage and pollution control measures should be installed <u>prior</u> to the main construction activities to control increased runoff and associated suspended solids loads in discharging waters from the construction areas. This involves the construction of drainage ditches, the installation of silt Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG (Liquid Natural Gas) Terminal Development at Ballylongford, Co. Kerry.

traps, stilling ponds and the implementation of prescribed buffer zones. Where possible drainage control should be installed during dry weather conditions.

- (b) A minimum of a 25m buffer zone has been applied to the cSAC and pNHA boundaries, such as from the embankment and the proposed landscaped area around the terminal plant. A 30m buffer zone has been applied for the laydown area located south of the Lagoon & Saline Lake (SW1).
- (c) Water Quality Monitoring during the Construction Phase is recommended in order to confirm discharge water quality values from the construction areas as well as receptor water quality to confirm and provide a check on the effectiveness of pollution control measures installed. Compliance testing and reporting should be undertaken on a weekly basis.

5. Risk of Pollution from Hydrocarbons Leakage

To control and contain any potential hydrocarbon and other harmful substances spillage by vehicles during construction, it is recommended that discrete "fuel stations" be designated for the purpose of safe fuel storage and fuel transfer to vehicles. These fuel stations should be bunded to 110% volume capacity of fuels stored at the site. The bunded areas should be drained by an oil interceptor and this drainage will be controlled by a pent stock valve that will be opened to discharge storm water from the bund. A suitably qualified management company will take responsibility for management and maintenance of the oil interceptor and associated drainage on a regular basis, including decommissioning (Section 2.6.4.2.2).

There is also the risk of leakage from vehicles and plant equipment during construction activity, as opposed to refuelling. The plant and equipment used on site will require regular mechanical checks and audits to prevent spillage of hydrocarbons on the exposed ground (during construction). This should be part of the construction environmental management system.

6. Other Potential Pollutants

During the construction phase, self contained port-a-loos with an integrated waste holding tank will be used on site for toilet facilities. This will be maintained by the service contractor on a regular basis and will be removed from the site on completion of the construction phase.

The pollution control measures outlined for suspended solids and hydrocarbons will provide sufficient water quality control (once audited for compliance) to mitigate the majority of other identified "natural" and "introduced" pollutants.

7. RESIDUAL IMPACTS

Minerex confirms that having undertaken this impact assessment study that that the proposed development can proceed without having any significant negative residual impacts on any of the protected habitats located adjacent to the Shannon LNG site, particularly those wetland habitats located downstream of the proposed embankment structure across the main stream, D1.

In fact some of the mitigation measures proposed have the potential to benefit the habitats present in terms of improving water supply and water quality for the habitats, thus producing a positive residual impact.

8. **REFERENCES**

- 1. British Standards Institution (1981) "Code of Practice for Site Investigations BS 5930".
- Environmental Protection Agency / Teagasc (2005) "Soils and Subsoils of Ireland". (MEL Ref: E-CD 998).
- **3. Council of Europe (1992)** "Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora". Council of Europe.
- 4. National Parks and Wildlife Service: <u>http://www.npws.ie</u>. Site Visited 09/05/07.
- 5. Fossit, J.A. (2000) "A Guide to Habitats in Ireland". The Heritage Council.
- 6. Geological Survey of Ireland, (1999) "Geology of the Shannon Estuary", Geological Survey of Ireland Publication.
- **7. S.I. No. 106 (2007)** "Water European Communities (Quality of water intended for human consumption) Regulations, 2007".
- 8. Environmental Protection Agency, (2004) "Towards Setting Guideline Values for the Protection of Groundwater in Ireland" Interim Report".

N	5			
rd Mór	-1			
	7			
a lite A	4			
Carhoonakineely	C			
	1			
123				
akilla				
S	~ ~			
	-			
oject Hydrological and Hydrogeological Impact Assessment the Proposed Shannon LNG (Liquid Natural Gas) Term Development at Ballylongford, Co. Kerry.	of ninal			
e Appendix A: Site Location Map				
ent Arup Consulting Engineers				
awing Ref. 1946-008.wor				
awing Ref. 1946-008.wor port Ref. 1946-156.doc Minere	X Limited			

Legend

Site Boundary

The entire area of the above graphic is occupied by Shannon Group -Namurian stage of Upper Carboniferous (Mudstone, Siltstone and Sandstone)

Titl Clie Dra

Fault ID (Mapped from aerial photographs - Arup)

		a marine			
Project	Hydrol the Pro Develo	ogical and Hydrogeological Im oposed Shannon LNG (Liquid opment at Ballylongford, Co. K	npact Assessment of Natural Gas) Terminal erry.		
Title	Appendix B1: Regional Bedrock Geology Map				
Client	Arup Co	onsulting Engineers			
Drawing	Ref.	1946-008.wor	24		
Report F	Ref.	1946-156.doc	Minerex		
Drawn &	Date	J. Allen-Hamilton (23/08/07)			

Site Boundary

Drainage and Flow Direction

Runoff Flow Direction

Micro-Catchment Boundary

Background Mapping Compliments of OSI, 2007

	A	103000		Am A	N/N/A/A		1211 1445
men	t	<i>j</i>	5 //			irhoo	
20-		1 11 1	/	/ //-/		Yo.	I The A
	h		or /		K -	illa¦_ _/_ _/	
Project	Hydrold the Pro Ballylor	ogica pose ngfor	l and Hydro d Shannor d, Co. Kerr	ogeologica n LNG Terr ry.	al Imp minal	pact Assessment of Development at	
Title	Append Primary	lix C2 and	2: Hydrolog Secondar	gy Map - M y Drainage	licro- Fea	Catchments and atures	
Client	Arup Co	onsu	Iting Engin	eers			
Drawing	Ref.	194	6-008.wor			2440, 1040, P	
Report R	ef.	194	6-156.doc			Minerex	
Drawn & Date J. A		J. A	llen-Hamil	ton (24/08/	/07)	Covironmental Limite	u

Ard	mor M	re Point ór	N
M	re		
N			
	N-		
	11		NVL.
	TU		
Th			
	cth	UOUMAKI	icely
		1	
	Y		
	K		
N			
The	0.200		
la	KIH		
		N A	
	11/		
	-		
K	Hydrolo	ogical and Hydrogeological Im	pact Assessment of
oject	the Pro Ballylor	posed Shannon LNG Termina ngford, Co. Kerry.	I Development at
le	Append	dix D1: Regional Bedrock Aqui	fer Map
ent	Arup Co	onsulting Engineers	
awing	Ref.	1946-008.wor	Minerex
port R awn &	er. Date	1940-19000C	Environmental Limited
AVVII OL	Date	0. Allen Hamilton (24/00/07)	

oject	Hydrolo the Pro Ballylor	ogical and Hydrogeological Im posed Shannon LNG Termina ngford, Co. Kerry.	pact Assessment of I Development at
е	Append	lix D2: Regional Bedrock Vuln	erability Map
ent	Arup Co	onsulting Engineers	
wing	Ref.	1946-008.wor	NA!
port R	ef.	1946-156.doc	Environmental Limited
wn &	Date	J. Allen-Hamilton (24/08/07)	

	BH19		o N
0.8	BH19 3 F	0.5 ^{BH20}	103000
	1		0
01		-20-	
oject	Hydrol the Pro Ballylo	ogical and Hydrogeological In oposed Shannon LNG Termin ngford, Co. Kerry.	npact Assessment of al Development at
le	Append	lix E: Depth to Bedrock (Subs	oils Thickness) Map
ent	Arup Co	onsulting Engineers	
awina	Ref.	1946-008.wor	The second second
port F	Ref.	1946-156.doc	Minerex
awn &	Date	O. Madden (24/08/07)	
10002452350			

			N
AC		E LANM	
	1		
/		A	
\swarrow			And I
	\searrow		A A A A A A A A A A A A A A A A A A A
1			: Martin
			Canter Per
		VI La	·10 00 000
		a g	a) ·
1	1	RALAPPANE	
	H		
//			
X			
	DD		11
20/1	FUE		
$\langle \rangle$	1		
Y	11		
1 all			
	-		
	Chilling and the second		
	~		
	- (
			and the second second
			Hart CHANNE
oject	Hydrol the Pro Ballylo	logical and Hydrogeological In oposed Shannon LNG Termin ongford, Co. Kerry.	npact Assessment of al Development at
le	Appen Natura	dix F1: Special Area of Conse al Heritage Area (pNHA) Desig	ervation (cSAC) & Inated Areas
ent	Arup Co	onsulting Engineers	
awing	Ref.	1946-008.wor	Minoroy
port R	lef.	1946-156doc	
awn &	Date	J. Allen-Hamilton (23/08/07)	

		RALAPPANE				
oject	Hydrol the Pro Ballylo	logical and Hydrogeological In oposed Shannon LNG Termin ongford, Co. Kerry.	npact Assessment of al Development at			
le	Appendix F2: Habitats of Concern within and peripheral to Designated Areas					
ent	Arup Co	onsulting Engineers				
wing	Ref.	1946-008.wor	Minerey			
port R	lef.	1946-156doc	Environmental Limited			
awn &	Date	J. Allen-Hamilton (23/08/07)				

_	_		
	BH19	BH20	103000
	ALCONTRACT		
the second se			
D1			
oject	Hydrol the Pro Ballylo	ogical and Hydrogeological In oposed Shannon LNG Termina ongford, Co. Kerry.	npact Assessment of al Development at
le	Appen Monito	dix G1: Groundwater and Surf pring Network	ace Water
ent	Arup Co	onsulting Engineers	
awing	Ref.	1946-008.wor	22010000
port F	Ref.	1946-156.doc	Minerex
awn 8	Date	J. Allen-Hamilton (24/08/07)	Convironmental Limited

			# - 2.7 (J.S 2011 / NALON SACH
	BH19	BH20	103000
	Buntan		
A second			
D1			
oject	Hydrol the Pro Ballylo	ogical and Hydrogeological In oposed Shannon LNG Termin ngford, Co. Kerry.	npact Assessment of al Development at
le	Append	dix G2: Groundwater Monitorir	ng Network
ent	Arup Co	onsulting Engineers	
awing	Ref.	1946-008.wor	
port F	Ref.	1946-156.doc	
awn &	Date	J. Allen-Hamilton (24/08/07)	

	_		
BH14 Dry E	3H13 1478	BH19 5.95 BH20 BH18 12.31	Ann 12m
1	é	03	
/	11	H	01 20
	-		-
1		1	11
oject	Hydrolo the Pro Ballylo	ogical and Hydrogeological Im posed Shannon LNG Termina ngford, Co. Kerry.	pact Assessment of al Development at
le	Append - April 2	dix H1: Groundwater Subsoils 2007	Phreatic Contour Map
ent	Arup C	onsulting Engineers	
awing	Ref.	1946-008.wor	Min
port R	lef.	1946-156.doc	
awn &	Date	J. Allen-Hamilton (24/08/07)	<u> </u>

Ballylongford NHA

BH03

IGSL SI -Open Boreholes with Composite Standpipes

ENSTA	LUATIN	BH19 BH20 BH18 DNS ONLY DNS ONLY		
	-	- AL	- the	
			1	A
Project	Hydrolo the Pro Ballylor	gical and Hydrogo posed Shannon L ngford, Co. Kerry.	eological Im NG Termina	pact Assessment of I Development at
Title	Append Map - A	lix H3: Groundwat pril 2007	er Vertical H	lydraulic Gradients
Client	Arup Co	onsulting Enginee	rs	
Drawing	Ref.	1946-008.wor		Minoroy
Report F	Ref.	1946-156.doc		
Drawn &	Date	J. Allen-Hamilton	(24/08/07)	

	S.S Dry		
D1			unnit un
oject	Hydrol the Pro	ogical and Hydrogeological In posed Shannon LNG Termina	al Development at
le	Appen Water	ngford, Co. Kerry. dix I2: Groundwater Subsoils pH Map - April 2007	Phreatic and Surface
ont	Arum C	pri Map - April 2007	
ent	Arup Co		
nort P	of	1946-156 doc	Minerex
	Dete		Environmental Limited
wn &	Date	J. Allen-Hamilton (24/08/07)	

325

Site Boundary

BR-7 MEL SI (Rotary Percussion) with Piezometer / Phreatic Nest

Electical Conductivity - uS/cm microSiemens (23-26/04/07)

Dra Rep

D1			
the state	N		
Project	Hydrol the Pro Ballylo	ogical and Hydrogeological Ir pposed Shannon LNG Termin ngford, Co. Kerry.	npact Assessment of al Development at
Title	Appen Electri	dix J1: Groundwater Bedrock cal Conducitivty Map - April 2	Piezometric (P1) 007
Client	Arup Co	onsulting Engineers	
Drawing	Ref.	1946-008.wor	Minore
Report F	Ref.	1946-156.doc	
Drawn &	Date	J. Allen-Hamilton (24/08/07)	

DT			
1		mil and	
oject	Hydrol the Pro Ballylo	ogical and Hydrogeological In oposed Shannon LNG Termina ngford, Co. Kerry.	npact Assessment of al Development at
le	Appen pH Ma	dix J2: Groundwater Bedrock p - April 2007	Piezometric (P1)
ent	Arup Co	onsulting Engineers	
awina	Ref.	1946-008.wor	20210-01010-
port R	lef.	1946-156.doc	Minerex
wn &	Date	J. Allen-Hamilton (24/08/07)	Environmental Limited

15.29 I/sec

Rep Dra

1			N
	100		
			Constanting of the second
	i		
	Creal State		
	1959		
	•		C STATE
-	IL IL		
manu	6		E CAR
4			
1			
		1	
	1		
	1		12/
			* /
			NYPE CONTRACT
T	1		1
1			
	· Antonio	AREA THAT	and the second
			1
	/		
/	D	3	-
			1
**			
		alastan	in the second se
-	100	D1	
/		11	
*		M	A STATE OF
		N.	1
	1	and infading a Martin and	
-	-	and the second second	f-l-
12	a la contra de la		1.
oiect	Hydrol	ogical and Hydrogeological In	npact Assessment of
oject	Ballylo	ngford, Co. Kerry.	a Development at
le	Appen	dix L: Drainage Discharge (D1) Map - April 2007
ent	Arup Co	onsulting Engineers	
awing	Ref.	1946-008.wor	
port F	Ref.	1946-156.doc	Minerex
awn 8	Date	J.A.Hamilton (23/08/07)	

Non-variable Monitoring Data Variable Monitoriu																
GENERAL	AL Monitoring Point ID type Monitoring Point ID type Monitored			Date	Time	Water levels			Chemistry			Flow Gauging	Comments			
Surface Water (SW) or Groundwater (GW)				Monitored	abitat Code	jnation SAC & NHA, ^{one)}			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	nens/cm @ 25°C (µS/cm)	рН	nperature (°C)	Discharge (litres / second)	
				Habitat	Fossitt H	Desig (SAC, NHA N						microSie		Ter		
SW	L1SW1	Lagoon Chemistry	LAGOON	Lagoon & Saline Lake	CW1	SAC &	28/03/07		N/app	N/app	N/app	878	7.76	13.4	N/app	Surface sample.
SW	L1SW1	Lagoon Chemistry	LAGOON	Lagoon & Saline Lake	CW1	SAC &	28/03/07		N/app	N/app	N/app	799	8.17	12.7	N/app	Deep base sample (0.44m).
sw	L1SW1	Lagoon Chemistry	LAGOON	Lagoon & Saline Lake	CW1	SAC & NHA	23/04/07	14:30	N/app	N/app	N/app	1096	7.81	14.9	N/app	Surface sample. Evidence of recent inundation by sea water since wet / fresh seaweed on upper beach berm.
SW	L2SW1	Lagoon Chemistry	LAGOON	Lagoon & Saline Lake	CW1	None	28/03/07		N/app	N/app	N/app	549	8.74	15.4	N/app	
SW	L2SW1	Lagoon Chemistry	LAGOON	Lagoon & Saline Lake	CW1	None	25/04/07		N/app	N/app	N/app	681	6.70	13.5	N/app	
SW	D1SW1	Drainage	DRAINAGE	Depositing River	FW2	SAC	29/03/07		N/app	N/app	N/app	610	7.80	12.5	N/app	Deep base sample c.0.6m depth.
SW	D1SW1	Drainage	DRAINAGE	Depositing River	FW2	SAC	25/04/07	14:09	N/app	N/app	N/app	426	6.92	11.2	N/app	Surface sample.
SW	D1SW2	Drainage	DRAINAGE	Depositing River	FW2	SAC &	29/03/07		N/app	N/app	N/app	483	7.93	10.4	N/app	
SW	D1SW2	Drainage	DRAINAGE	Depositing River	FW2	SAC &	25/04/07	13:26	N/app	N/app	N/app	442	7.15	11.0	N/app	
SW	D1SW3	Drainage	DRAINAGE	Tidal River	CW2	SAC &	29/03/07		N/app	N/app	N/app	500	8.17	13.2	N/app	
SW	D1SW3	Drainage	DRAINAGE	Tidal River	CW2	SAC &	23/04/07	10:48	N/app	N/app	N/app	698	8.30	14.1	N/app	
SW	D2SW1	Drainage	DRAINAGE	Drainage Ditch	FW4	None	25/04/07	03:36	N/app	N/app	N/app	514	6.87	12.8	N/app	
SW	D2SW2	Drainage	DRAINAGE	Drainage Ditch	FW4	None	29/03/07		N/app	N/app	N/app	353	7.07	10.5	N/app	
SW	D2SW2	Drainage	DRAINAGE	Drainage Ditch	FW4	None	25/04/07	10:33	N/app	N/app	N/app	569	7.07	12.5	N/app	
SW	D2SW3	Drainage	DRAINAGE	Drainage Ditch	FW4	None	25/04/07	01:40	N/app	N/app	N/app	568	7.01	12.1	N/app	
SW	D2SW4	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC	28/03/07		N/app	N/app	N/app	315	7.54	10.9	N/app	
SW	D2SW4	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC	25/04/07	11:05	N/app	N/app	N/app	563	6.79	10.3	N/app	
SW	D2SW5	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC	28/03/07		N/app	N/app	N/app	315	7.54	10.9	N/app	
SW	D2SW5	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC	25/04/07	00:43	N/app	N/app	N/app	617	6.71	11.4	N/app	
SW	D3SW1	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	None	23/04/07	12:30	N/app	N/app	N/app	372	7.36	12.6	N/app	
SW	D3SW2	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	None	29/03/07		N/app	N/app	N/app	318	7.30	11.7	N/app	
SW	D3SW2	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	None	25/04/07		N/app	N/app	N/app				N/app	HC n/av.
SW	D5SW1	Drainage Chemistry	SPRING	Drainage Ditch	FW4	None	29/03/07		N/app	N/app	N/app	358	7.57	9.7	N/app	
SW	D5SW1	Drainage Chemistry	SPRING	Drainage Ditch	FW4	None	25/04/07	06:57	N/app	N/app	N/app	224	5.90	16.1	N/app	
SW	D6SW1	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC & NHA	29/03/07		N/app	N/app	N/app	1516	7.11	9.7	N/app	
SW	D6SW1	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC & NHA	23/04/07	18:35	N/app	N/app	N/app	3640	7.37	14.6	N/app	
SW	D6SW2	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC & NHA	29/03/07		N/app	N/app	N/app	1668	6.97	11.2	N/app	
SW	D6SW2	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	SAC & NHA	23/04/07	18:30	N/app	N/app	N/app	5680	7.17	15.4	N/app	
SW	D7SW1	Drainage Chemistrv	DRAINAGE	Drainage Ditch	FW4	NHA	25/04/07		N/app	N/app	N/app				N/app	Dry.
sw	D8SW1	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	None	25/04/07	11:22	N/app	N/app	N/app	808	6.97	13.2	N/app	
SW	D8SW2	Drainage Chemistrv	DRAINAGE	Drainage Ditch	FW4	None	25/04/07	11:26	N/app	N/app	N/app	811	7.30	13.2	N/app	
SW	D9SW1	Drainage Chemistry	DRAINAGE	Drainage Ditch	FW4	None	28/03/07		N/app	N/app	N/app	313	6.59	12.2	N/app	

Non-variable Monitoring Data																
GENERAL	Monitoring	Monitoring point	GEO-UNIT	HABITATS & DESIGNATION	N		Date	Time	Water levels	into .		Chemistry			Flow	Comments
	Point ID	type	Monitored		•										Gauging	
Surface Water					e	1			Ref mOD	WL mbRef	WL mOD	ູດ	рН	្ជ	Discharge	
(SW) or				red	^b	H≷.			(top of Plastic		(Malin)	@ 25 [hS/o		re (°	(litres / second)	
Groundwater (GW)				ito	at	°≥			Casing / top of		(,	ç		atur		
(011)				lo	bit	sAC sAC			,			lens		ber		
				at M	На	sig ×∃Sig						Sien		Tem		
				pits	sitt	ΰD						icro		- T		
				P	ös	(SA						E				
SW	D9SW1	Drainage	DRAINAGE	Drainage Ditch	FW4	None	24/04/07	10:22	N/app	N/app	N/app	408	6.74	13.8	N/app	Drain not flowing.
SW	SeaSW1	Chemistry Marine Chemistry	SEA	Shingle & Gravel Shore	LS1	SAC &	28/03/07		N/app	N/app	N/app	>3999	7.99	11.9	N/app	
SW	SeaSW1	Marine Chemistry	SEA	Shingle & Gravel Shore	LS1	NHA SAC &	23/04/07	14:30	N/app	N/app	N/app	>20.000	8.35	13.4	N/app	
0144			MADOUL	Wet Oreseland (Inverse	004/	NHA	00/00/07		N/ana	ht/see	h l/ana	000	0.00	10.0	hlferer	Olean d'anna an Iontain Marach
500	M5W1	Chemistry	MARSH	Agricultural Grassland	GS4 / GA1	None	28/03/07		м/арр	iv/app	м/арр	200	6.92	10.6	м/арр	Standing water in Marsh.
SW	MSW1	Standing Water	MARSH	Wet Grassland / Improved	GS4 /	None	24/04/07	12:10	N/app	N/app	N/app	344	6.52	16.2	N/app	Standing water in Marsh.
SW	MSW2	Standing Water	MARSH	Wet Grassland / Improved	GS4 /	None	29/03/07		N/app	N/app	N/app	343	7.04	10.0	N/app	Standing water in Marsh.
SW	MSW2	Standing Water	MARSH	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	24/04/07	11:00	N/app	N/app	N/app	359	6.42	12.6	N/app	Standing water in Marsh.
SW	MSW3	Chemistry	SPRING	Agricultural Grassland	GA1	None	29/03/07		N/app	N/app	N/app	314	7 12	11.0	N/app	
311	WI3W3	Chemistry	SERING	Agricultural Grassland	GA1	None	29/03/07		марр	n/app	Iwapp	314	7.12	11.9	марр	
SW	MSW3	Drainage Chemistry	SPRING	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	24/04/07	12:35	N/app	N/app	N/app	379	6.88	14.0	N/app	
SW	MSW3	Drainage Chomistry	SPRING	Wet Grassland / Improved	GS4 /	None	24/04/07	12:35	N/app	N/app	N/app	504	7.48	18.7	N/app	
SW	SMSW1	Standing Water	SALT MARSH	Lower Salt Marsh	CM1	NHA	29/03/07		N/app	N/app	N/app	>20,000	7.80	16.6	N/app	Standing water in Salt Marsh.
SW	SMSW1	Standing Water	SALT MARSH	Lower Salt Marsh	CM1	NHA	23/04/07	15:00	N/app	N/app	N/app	>20,000	6.72	17.5	N/app	Standing water in Salt Marsh.
SW	SMSW2	Standing Water	SALT MARSH	Lower Salt Marsh	CM1	NHA	23/04/07	15:00	N/app	N/app	N/app	>20,000	5.20	16.3	N/app	Standing water in Salt Marsh.
SW	SSSW1	Standing Water	SEDGE SWAMP	Reed & Large Sedge	FS1	SAC &	29/03/07		N/app	N/app	N/app	2485	7.34	8.6	N/app	Standing water in Sedge Swamp.
SW	SSSW1	Standing Water	SEDGE SWAMP	Reed & Large Sedge	FS1	SAC &	23/04/07	18:40	N/app	N/app	N/app	1960	7.75	14.7	N/app	Standing water in Sedge Swamp.
SW	SSSW2	Standing Water	SEDGE SWAMP	Reed & Large Sedge	FS1	SAC &	29/03/07		N/app	N/app	N/app	272	6.95	10.1	N/app	Standing water in Sedge Swamp.
SW	SSSW2	Standing Water	SEDGE SWAMP	Reed & Large Sedge	FS1	SAC &	23/04/07	18:45	N/app	N/app	N/app	409	6.63	14.3	N/app	Standing water in Sedge Swamp.
SW	SSSW3	Standing Water	SEDGE SWAMP	Neutral Grassland / Improved	GS1 /	SAC &	28/03/07		N/app	N/app	N/app	450	7.03	10.1	N/app	
SW	SSSW3	Standing Water	SEDGE SWAMP	Neutral Grassland / Improved	GS1 /	SAC &	25/04/07	18:50	N/app	N/app	N/app				N/app	Dry.
SW	SSSW4	Chemistry Standing Water	SEDGE SWAMP	Agricultural Grassland Reed & Large Sedge	GA1 FS1	NHA SAC &	28/03/07		N/app	N/app	N/app	258	7.17	8.7	N/app	
C14/	CC CWA	Chemistry		Deed 8 Lorge Codes	F04	NHA	20/04/07	10.50	Nilopp	hl/ann	hl/ene	207	5.07	44.4	Nilopp	
300	333114	Chemistry	SEDGE SWAMP	Reed & Large Sedge	-51	NHA	20/04/07	10:50	марр	марр	марр	307	5.67	11.1	марр	
SW	SPSW1	Spring Discharge	SPRING	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	28/03/07		N/app	N/app	N/app	1065	7.21	13.3	N/app	
SW	SPSW1	Spring Discharge	SPRING	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	25/04/07	11:17	N/app	N/app	N/app	593	6.94	11.9	N/app	
SW	SPSW2	Spring Discharge	SPRING	Neutral Grassland / Improved	GS1 /	None	28/03/07		N/app	N/app	N/app	310	7.00	10.6	N/app	
SW	SPSW2	Spring Discharge	SPRING	Neutral Grassland / Improved	GS1 /	None	23/04/07	14:50	N/app	N/app	N/app				N/app	Dry.
SW	SPSW3	Spring Discharge	SPRING	Neutral Grassland / Improved	GS1 /	SAC &	28/03/07		N/app	N/app	N/app	336	7.33	9.2	N/app	
SW	SPSW3	Spring Discharge	SPRING	Agricultural Grassland Neutral Grassland / Improved	GS1 /	SAC &	26/04/07	10:47	N/app	N/app	N/app	372	6.05	12.1	N/app	
SW	SPSW4	Spring Discharge	SPRING	Neutral Grassland / Improved	GS1 /	None	29/03/07		N/app	N/app	N/app	266	6.84	12.1	N/app	
SW	SPSW4	Spring Discharge	SPRING	Neutral Grassland / Improved	GS1 /	None	25/04/07	14:43	N/app	N/app	N/app	390	6.07	19.7	N/app	
SW	SPSW5	Spring Discharge	SPRING	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	29/03/07		N/app	N/app	N/app	388	7.98	11.4	N/app	
SW	SPSW5	Spring Discharge	SPRING	Agricultural Grassland	GA1	None	25/04/07	12:01	N/app	N/app	N/app				N/app	Drv.
SIM		Stoff guogo /	DRAINACE	Agricultural Grassland	GA1	Nono	20/02/07	16.15	15.00	0.95	45.44	425	6.64	14.4		
300	DI-3W-FG-3G1	Drainage	DIAMAGE	Depositing River	F VVZ	None	29/03/07	10.15	13.33	0.00	15.14	420	0.04	14.4		

Arup Consulting Engineers

Point ID

GENERAL Monitoring

Surface Water (SW) or Groundwater

(GW)

SW

Non-variable Monitoring Data

type

D1-SW-FG-SG1 Staff guage Drainage

D1-SW-FG-SG1 Staff guage

D1-SW-FG-SG2 Staff guage

D1-SW-FG-SG3 Staff guage /

D1-SW-FG-SG3 Staff guage /

D1-SW-FG-SG5 Staff guage /

D1-SW-FG-SG5 Staff guage /

D1-SW-FG-SG5 Staff guage /

D1-SW-FG-SG6 Staff guage /

D1-SW-FG-SG6 Staff guage /

D1-SW-FG-SG7 Staff guage /

D1-SW-FG-SG7 Staff guage /

D1-SW-SG4

D1-SW-SG4

D1-SW-SG4

Drainage

Drainage D1-SW-FG-SG2 Staff guage /

Drainage D1-SW-FG-SG2 Staff guage /

Drainage D1-SW-FG-SG3 Staff guage

Drainage

Drainage

Drainage

Drainage

Staff guage /

Staff guage / Drainage

Staff guage /

Drainage

Drainage

Drainage

Drainage

Drainage

Drainage D1-SW-FG-SG6 Staff guage /

Drainage

Drainage

Monitoring point GEO-UNIT

Monitored

DRAINAGE

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG Terminal Development at Ballylongford, Co. Kerry

Depositing River

(Transition)

Depositing River / Tidal River

Depositing River / Tidal River

HABITATS & DESIGNATIO

Habitat Monitored

			Variable	Moni	toring Resu							
N			Date	Time	Water levels			Chemistry			Flow	Comments
											Gauging	
	Fossitt Habitat Code	Designation (SAC, NHA, SAC & NHA, None)			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	microSiemens/cm @ 25°C (µS/cm)	рН	Temperature (°C)	Discharge (litres / second)	
					.							
	FW2	None	14/04/07		15.99	0.88	15.11					
	FW2	None	24/04/07	15:46	15.99	0.90	15.09	363	6.78	15.8	15.29	
	FW2	None	29/03/07	13:20	14.90	0.66	14.24	443	7.40	13.1		
	FW2	None	14/04/07		14.90	0.72	14.18					
	FW2	None	24/04/07	14:46	14.90	0.75	14.15	363	7.02	15.4	16.47	
	FW2	None	29/03/07	12:10	5.67	0.82	4.85	468	7.73	12.1		
	FW2	None	14/04/07		5.67	0.85	4.82					
	FW2	None	24/04/07	12:40	5.67	0.86	4.81	390	7.16	14.4	13.91	
	FW2	None	28/03/07	12:05	4.78	0.84	3.94	468	8.00	10.9	N/app	
	FW2	None	14/04/07		4.78	0.88	3.90				N/app	
	FW2	None	24/04/07	12:15	4.78	0.90	3.88	373	6.98	14.5	N/app	
	FW2	SAC	28/03/07	15:20	3.82	0.85	2.97	400	7.45	13.5		
	FW2	SAC	14/04/07		3.82	0.87	2.95					
	FW2	SAC	24/04/07	10:24	3.82	0.88	2.94	365	7.20	12.6	11.81	
	FW2	SAC & NHA	28/03/07	17:20	2.38	0.74	1.64	357	7.64	13.6		
	FW2	SAC & NHA	14/04/07		2.38	0.82	1.56					
	FW2	SAC & NHA	23/04/07	18:30	2.38	0.84	1.54	360	7.50	14.2	15.22	
	FW2 / CW2	SAC & NHA	28/03/07	17:00	2.35	0.80	1.55	371	8.06	13.7		
	FW2 / CW2	SAC & NHA	14/04/07		2.35	0.84	1.51					
	FW2 / CW2	SAC & NHA	23/04/07	17:00	2.35	0.86	1.49	387	7.34	14.5	16.50	
	CW2	SAC & NHA	28/03/07	16:54	2.01	0.48	1.53	435	7.84	14.0	N/app	
	CW2	SAC & NHA	14/04/07		2.01	0.50	1.51				N/app	
	CW2	SAC & NHA	24/04/07	15:10	2.01	0.52	1.49	423	7.90	13.9	N/app	
	CW2	SAC &	27/03/07	14:30	2.28	0.82	1.46				N/app	

		Drainage		(Transition)	CW2	NHA										
SW	D1-SW-FG-SG	Staff guage /	DRAINAGE	Depositing River / Tidal River	FW2 /	SAC &	23/04/07	17:00	2.35	0.86	1.49	387	7.34	14.5	16.50	
SW	D1-SW-SG8	Staff guage / Drainage	DRAINAGE	Tidal River	CW2 CW2	SAC & NHA	28/03/07	16:54	2.01	0.48	1.53	435	7.84	14.0	N/app	
SW	D1-SW-SG8	Staff guage / Drainage	DRAINAGE	Tidal River	CW2	SAC & NHA	14/04/07		2.01	0.50	1.51				N/app	
SW	D1-SW-SG8	Staff guage / Drainage	DRAINAGE	Tidal River	CW2	SAC & NHA	24/04/07	15:10	2.01	0.52	1.49	423	7.90	13.9	N/app	
SW	D1-SW-SG9	Staff guage / Drainage	DRAINAGE	Tidal River	CW2	SAC & NHA	27/03/07	14:30	2.28	0.82	1.46				N/app	
SW	D1-SW-SG9	Staff guage / Drainage	DRAINAGE	Tidal River	CW2	SAC & NHA	28/03/07	16:40	2.28	0.82	1.46	399	7.26	14.1	N/app	
SW	D1-SW-SG9	Staff guage / Drainage	DRAINAGE	Tidal River	CW2	SAC & NHA	14/04/07		2.28	0.84	1.44				N/app	
SW	D1-SW-SG9	Staff guage / Drainage	DRAINAGE	Tidal River	CW2	SAC & NHA	23/04/07	15:45	2.28	0.84	1.44	721	7.58	13.7	N/app	Water depth = c.0.10m - too shallow for flow gauging.
SW	L1-SW-SG10	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		27/03/07	13:30	3.45	0.85	2.60				N/app	
SW	L1-SW-SG10	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		28/03/07	15:19	3.45	0.86	2.59	681	7.63	12.5	N/app	Surface sample.
SW	L1-SW-SG10	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		28/03/07	15:19	3.45	0.86	2.59	1624	7.71	13.6	N/app	Deep base sample (c.0.4m).
SW	L1-SW-SG10	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		28/03/07	20:10	3.45	0.86	2.59				N/app	WL measured at Low Tide.
SW	L1-SW-SG10	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		14/04/07		3.45						N/app	WL n/av. Area around base of staff guage de out since water level last monitored.
Minerex En	vironmental Limite	d						946-011 (1	ASTER)		1	·		L.		Page 3 of 7

Area around base of staff guage drying water level last monitored.

Non-vari	able Moni	toring Data			Variable	e Moni	toring Resu	lts								
GENERAL	Monitoring Point ID	Monitoring point type	GEO-UNIT Monitored	HABITATS & DESIGNATION			Date	Time	Water levels			Chemistry			Flow Gauging	Comments
Surface Water (SW) or Groundwater (GW)				Habitat Monitored	Fossitt Habitat Code	Designation (SAC, NHA, SAC & NHA, None)			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	microSiemens/cm @ 25°C (µS/cm)	рН	Temperature (°C)	Discharge (litres / second)	
S/W/	1 1 SW SC10	Stoff gupgo /		Lagoon & Solino Lako		1	22/04/07	14:20	2.45			1060	7.92	15.5	N/opp	W/L p/ov Area around been of staff guage dried
500	L1-SW-SG10	Lagoon	LAGOON	Lagoon & Saine Lake	CVVI		23/04/07	14:30	3.40			1060	7.02	15.5	марр	out.
SW	L1-SW-SG11	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		27/03/07	13:08	3.36	0.70	2.66				N/app	
SW	L1-SW-SG11	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		28/03/07	16:00	3.36	0.70	2.66	711	9.09	14.8	N/app	Surface sample.
SW	L1-SW-SG11	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		14/04/07		3.36	0.84	2.52				N/app	Area drying out since last monitored.
SW	L1-SW-SG11	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		23/04/07	14:30	3.36	0.90	2.46	1123	7.23	14.7	N/app	Area drying out.
SW	L1-SW-SG12	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		27/03/07	14:00	3.34	0.70	2.64				N/app	
SW	L1-SW-SG12	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		28/03/07	15:34	3.34	0.71	2.63	559	9.91	15.1	N/app	Surface sample.
SW	L1-SW-SG12	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		28/03/07	15:34	3.34	0.71	2.63	303	9.27	14.7	N/app	Deeper base sample (c.0.3m).
SW	L1-SW-SG12	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		14/04/07		3.34	0.84	2.50				N/app	Area drying out, Water Level just at base of
SW	L1-SW-SG12	Staff guage /	LAGOON	Lagoon & Saline Lake	CW1		23/04/07	14:40	3.34			575	7.73	15.5	N/app	Area dried out.
SW	L1-SW-SG13	Staff guage / Lagoon	LAGOON	Lagoon & Saline Lake	CW1		23/04/07	14:35	3.05	0.60	2.45	1618	8.23	14.8	N/app	New Staff Gauge installed. Water depth = 0.5m. Deep water sample.
GW	GC13PH1	Phreatic	PEAT	Wet Grassland / Improved	GS4 /	None	14/04/07		3.22						N/app	WL n/av - installation removed to check if ok & re-
GW	GC13PH1	Phreatic	PEAT	Wet Grassland / Improved	GS4 /	None	25/04/07		3.22	1.05	2.17				N/app	No Water available for HC.
GW	GC14PH1	Phreatic	PEAT	Reed & Large Sedge	FS1	SAC &	14/04/07		3.58	1.36	2.22				N/app	
GW	GC14PH1	Phreatic	PEAT	Reed & Large Sedge	FS1	SAC &	23/04/07		3.58	1.42	2.16				N/app	No Water available for HC.
GW	GC17PH1	Phreatic	PEAT	Lower Salt Marsh	CM1	NHA	14/04/07		3.06	1.20	1.86				N/app	
GW	GC17PH1	Phreatic	PEAT	Lower Salt Marsh	CM1	NHA	23/04/07		3.06	1.22	1.84				N/app	No Water available for HC.
GW	BR1P1	Piezometer	BEDROCK -	Neutral Grassland / Improved	GS1 /	None	12/04/07		16.34	1.12	15.22				N/app	
GW	BR1P1	Piezometer	BEDROCK -	Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		16.34	1.16	15.18				N/app	
GW	BR1P1	Piezometer	BEDROCK -	Neutral Grassland / Improved	GS1 /	None	24/04/07	16:30	16.34	1.27	15.07	429	6.26	12.8	N/app	10 litres purged. Sample clear. Good recharge.
GW	BR1P2	Piezometer	BEDROCK -	Neutral Grassland / Improved	GS1 /	None	12/04/07		16.21	1.02	15.19				N/app	
GW	BR1P2	Piezometer	BEDROCK -	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		16.21	1.04	15.17				N/app	
GW	BR1P2	Piezometer	Weathered BEDROCK -	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	24/04/07	16:32	16.21	1.14	15.07	411	6.33	13.4	N/app	Purged 10 litres. Sample slightly cloudy. Good
GW	BR1P3	Piezometer	Weathered BEDROCK -	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	12/04/07		16.36	1.15	15.21				N/app	recharge.
GW	BR1P3	Piezometer	BEDROCK -	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		16.36	1.19	15.17				N/app	
GW	BR1P3	Piezometer	Weathered BEDROCK -	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	24/04/07	16:34	16.36	1.19	15.17	409	6.54	13.7	N/app	
GW	BR1PH1	Phreatic	Weathered Subsoils - CLAY	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	12/04/07		16.40	1.19	15.21				N/app	
GW	BR1PH1	Phreatic	Subsoils - CLAY	Agricultural Grassland	GA1 GS1 /	None	14/04/07		16.40			-		-	N/app	Drv.
CW		Phroatia	Subsoils OLAY	Agricultural Grassland	GA1	None	24/04/07	16:20	16.40						N/opp	Dov
GW	вк1PH1	Phreatic	Subsoils - CLAY	Agricultural Grassland / Improved	GS1/ GA1	None	24/04/07	16:36	10.40						іч/арр	
GW	BR2P1	Piezometer	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	12/04/07		16.12	1.51	14.61				N/app	
GW	BR2P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 /	None	14/04/07		16.12	1.52	14.60				N/app	

Non-vari	able Moni	toring Data				Variable	e Moni	torina Resu	lts							
GENERAL	Monitoring	Monitoring point	GEO-UNIT	HABITATS & DESIGNATION	N		Date	Time	Water levels			Chemistry			Flow	Comments
	Point ID	type	Monitored												Gauging	
Surface Water (SW) or Groundwater (GW)				at Monitored	t Habitat Code	signation «HA, SAC & NHA, None)			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	ssiemens/cm @ 25°C (µS/cm)	рН	Temperature (°C)	Discharge (litres / second	
				Habit	Fossit	(SAC, r						micro				
GW	BR2P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 / GA1	None	24/04/07	14:11	16.12	1.36	14.76	947	7.11	13.6	N/app	Purged 10 litres. Sample cloudy. Good recharge.
GW	BR2P2	Piezometer	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	12/04/07		16.07	1.26	14.81				N/app	
GW	BR2P2	Piezometer	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	14/04/07		16.07	1.31	14.76				N/app	
GW	BR2P2	Piezometer	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	24/04/07	14:15	16.07	1.58	14.49	770	6.90	12.9	N/app	Purged 10 litres. Sample cloudy. Good recharge.
GW	BR2PH1	Phreatic	BEDROCK	Agricultural Grassland / Improved	GS1 / GA1	None	12/04/07		16.37	1.52	14.85				N/app	
GW	BR2PH1	Phreatic	BEDROCK	Agricultural Grassland / Improved	GS1/ GA1	None	14/04/07	14.17	16.37	1.60	14.77	012	7.22	12.2	N/app	Purged 10 litres, Sample cloudy, Good recharge
GW	BR3P1	Piezometer	BEDROCK	Agricultural Grassland / Improved	GA1 GS1 /	None	14/04/07	14.17	11.42	1.00	9.92	512	1.22	12.2	N/app	r urgen to intes. Gample Goudy, Good recharge.
GW	BR3P1	Piezometer	BEDROCK	Agricultural Grassland / Improved	GA1 GS1 /	None	24/04/07	11:40	11.42	5.60	5.82	887	6.96	12.7	N/app	Purged 30 litres, Sample cloudy, Good recharge,
GW	BR3PH1	Phreatic	Subsoil - CLAY /	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		11.55	0.27	11.28				N/app	·
GW	BR3PH1	Phreatic	BEDROCK Subsoil - CLAY /	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	24/04/07	11:40	11.55	4.89	6.66	928	6.93	12.5	N/app	Purged 30 litres. Sample cloudy. Good recharge.
GW	BR4P1	Piezometer	BEDROCK BEDROCK	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		6.43						N/app	WL n/av. Pipe blocked at 1.90mbRef.
GW	BR4P1	Piezometer	BEDROCK	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	24/04/07	09:23	6.43	1.75	4.68	1019	7.70	13.3	N/app	Purged 10 litres. Sample very cloudy. Good
GW	BR4P2	Piezometer	Subsoil - CLAY /	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		6.38	1.51	4.87				N/app	recharge.
GW	BR4P2	Piezometer	Subsoil - CLAY /	Neutral Grassland / Improved	GS1 / GA1	None	24/04/07	09:22	6.38	1.57	4.81	635	7.35	12.3	N/app	Purged 10 litres. Sample cloudy. Good recharge.
GW	BR4PH1	Phreatic	Subsoils - CLAY	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	14/04/07		6.14	1.37	4.77				N/app	
GW	BR4PH1	Phreatic	Subsoils - CLAY	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	24/04/07	09:21	6.14	1.43	4.71	637	7.23	11.8	N/app	Purged 10 litres. Sample slightly cloudy. Good recharge.
GW	BR5P1	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	12/04/07		6.98	1.20	5.78				N/app	
GW	BR5P1	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	14/04/07		6.98	1.24	5.74				N/app	
GW	BR5P1	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	25/04/07	12:15	6.98	1.23	5.75	372	6.21	11.5	N/app	Purged 15 litres. Sample moderately cloudy. Good recharge.
GW	BR5P2	Piezometer	Subsoil - CLAY / BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	12/04/07		6.92	1.09	5.83				N/app	
GW	BR5P2	Piezometer	BEDROCK	Agricultural Grassland	GS4 / GA1	None	14/04/07	12.16	6.92	1.14	5.78	387	6.13	11.0	N/app	Purged 15 litres, Sample moderately cloudy, Good
GW	BR5PH1	Phreatic	BEDROCK Subsoils - CLAY	Agricultural Grassland / Improved	GA1 GS4 /	None	12/04/07	12.10	6.72	0.79	5.00	307	0.13	11.0	N/app	recharge.
GW	BR5PH1	Phreatic	Subsoils - CLAY	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	14/04/07		6.72	0.84	5.88				N/app	
GW	BR5PH1	Phreatic	Subsoils - CLAY	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	25/04/07	12:17	6.72	0.80	5.92	268	6.05	11.5	N/app	Purged 10 litres. Sample moderately cloudy. Good
GW	BR6P1	Piezometer	BEDROCK	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	14/04/07		6.91	1.23	5.68				N/app	recharge.
GW	BR6P1	Piezometer	BEDROCK	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	25/04/07	14:09	6.91	1.23	5.68	520	7.07	13.2	N/app	Purged 15 litres. Sample slightly cloudy. Good
GW	BR6P2	Piezometer	Subsoil - CLAY /	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	14/04/07		6.85	1.17	5.68				N/app	recnarge.
GW	BR6P2	Piezometer	Subsoil - CLAY /	Wet Grassland / Improved	GA1 GS4 /	None	25/04/07	14:11	6.85	1.14	5.71	514	6.80	12.2	N/app	Purged 15 litres. Sample slightly cloudy. Good
GW	BR6P3	Piezometer	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	14/04/07		6.76	1.09	5.67				N/app	100narge.
GW	BR6P3	Piezometer	Subsoils - CLAY	Wet Grassland / Improved	GS4 /	None	25/04/07	14:12	6.76	1.05	5.71	545	6.95	12.1	N/app	Purged 15 litres. Sample moderately cloudy. Good

Non-vari	Non-variable Monitoring Data								toring Resu	ilts						
GENERAL	Monitoring Point ID	Monitoring point type	GEO-UNIT Monitored	HABITATS & DESIGNATION	N		Date	Time	Water levels			Chemistry			Flow Gauging	Comments
Surface Water (SW) or Groundwater (GW)				Habitat Monitored	Fossitt Habitat Code	Designation (SAC, NHA, SAC & NHA, None)			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	microSiemens/cm @ 25°C (µS/cm)	рН	Temperature (°C)	Discharge (litres / second)	
GW	BR6PH1	Phreatic	Subsoils - CLAY	Wet Grassland / Improved	GS4 /	None	14/04/07		6.79	1.05	5.74				N/app	
GW	BR6PH1	Phreatic	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	25/04/07	14:14	6.79	1.08	5.71	735	6.94	13.4	N/app	Purged 10 litres. Sample moderately cloudy. Good recharge.
GW	BR7P1	Piezometer	BEDROCK - Weathered	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	14/04/07		2.77	0.40	2.37				N/app	
GW	BR7P1	Piezometer	BEDROCK -	Wet Grassland / Improved	GS4 /	None	25/04/07	10:24	2.77	0.34	2.43	652	7.01	11.5	N/app	Purged 10 litres. Sample moderately cloudy. Good
GW	BR7P2	Piezometer	BEDROCK -	Wet Grassland / Improved	GS4 /	None	14/04/07		2.73	0.38	2.36				N/app	recharge.
GW	BR7P2	Piezometer	Weathered BEDROCK -	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	25/04/07	10:25	2.73	0.30	2.43	613	7.02	11.7	N/app	Purged 10 litres. Sample clear. Good recharge.
GW	BR7P3	Piezometer	Weathered BEDROCK	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	14/04/07		2.63	0.28	2 35				N/app	
CW/	BD7 D2	Discometer	DEDDOCK	Agricultural Grassland	GA1	Nene	25/04/07	10.20	0.00	0.00	2.44	c00	7.07	10.4	hl/ann	Durned 40 litree Cornels slightly sloudy. Coord
GW	BR/P3	Plezometer	BEDRUCK	Agricultural Grassland	GS4 / GA1	None	25/04/07	10:26	2.63	0.22	2.41	623	7.07	12.1	м/арр	recharge.
GW	BR7PH1	Phreatic	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	14/04/07		2.57	0.20	2.37				N/app	
GW	BR7PH1	Phreatic	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	25/04/07	10:27	2.57	0.11	2.46	640	7.18	11.8	N/app	Purged 10 litres. Sample cloudy. Good recharge.
GW	BR8P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 / GA1	None	14/04/07		5.77	2.58	3.19				N/app	
GW	BR8P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 /	None	25/04/07	15:10	5.77	2.65	3.12	840	6.98	11.9	N/app	Purged 15 litres. Sample moderately cloudy. Good
GW	BR8P2	Piezometer	Subsoil - CLAY /	Neutral Grassland / Improved	GS1 /	None	14/04/07		5.63	2.43	3.20				N/app	recharge.
GW	BR8P2	Piezometer	Subsoil - CLAY /	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	25/04/07	15:12	5.63	2.51	3.12	642	6.95	11.6	N/app	Purged 15 litres. Sample moderately cloudy. Good
GW	BR8PH1	Phreatic	Subsoils - CLAY	Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07		5.55	2.36	3.19				N/app	recnarge.
GW	BR8PH1	Phreatic	Subsoils - CLAY	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	25/04/07	15:13	5.55	2.51	3.04	684	6.74	12.9	N/app	Purged 10 litres. Sample very cloudy. Average /
GW	BR9P1	Piezometer	BEDROCK	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	14/04/07		4.24	0.96	3.28				N/app	moderate recharge.
GW	BR9P1	Piezometer	BEDROCK	Agricultural Grassland Wet Grassland / Improved	GA1 GS4 /	None	23/04/07	19:00	4.24	0.99	3.25	994	7.04	11.4	N/app	Purged 10 litres. Sample clear. Good recharge.
GW	BR9P2	Piezometer	Subsoil - CLAY /	Agricultural Grassland	GA1	None	14/04/07		4 15	0.87	3.28				N/app	
011		Disessolution	BEDROCK	Agricultural Grassland	GA1	Ness	00/04/07	40.00	1.15	0.00	0.20		7.45		hl/ana	Durand 40 litera Davida d
GW	BR9P2	Plezometer	BEDROCK	Agricultural Grassland	GS47 GA1	None	23/04/07	19:00	4.15	0.93	3.22	890	7.15	11.4	м/арр	Purged 10 litres. Sample clear. Good recharge.
GW	BR9P3	Piezometer	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	14/04/07		4.08	0.79	3.29				N/app	
GW	BR9P3	Piezometer	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	23/04/07	19:00	4.08	0.82	3.26	867	7.21	11.3	N/app	Purged 10 litres. Sample clear. Good recharge.
GW	BR9PH1	Phreatic	Subsoils - CLAY	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	14/04/07		4.03	0.74	3.29				N/app	
GW	BR9PH1	Phreatic	Subsoils - CLAY	Wet Grassland / Improved	GS4 /	None	23/04/07	19:00	4.03	0.76	3.27	794	7.10	11.3	N/app	Purged 10 litres. Sample very cloudy. Good
GW	BR10P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 /	None	14/04/07		7.13	4.92	2.21				N/app	loonargo.
GW	BR10P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 /	None	25/04/07	15:40	7.13	4.80	2.33	957	7.76	16.9	N/app	Water level too low to purge, small sample
GW	BR10P2	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 /	None	14/04/07		7.06	4.85	2.21				N/app	
GW	BR10P2	Piezometer	BEDROCK	Neutral Grassland / Improved	GA1 GS1 /	None	25/04/07	15:40	7.06	4.74	2.32	546	7.36	16.7	N/app	Water level too low to purge, small sample
GW	BR10P3	Piezometer	BEDROCK	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	14/04/07	+	6.96	5.78	1.18				N/app	available for HC only.
GW	BR10P3	Piezometer	BEDROCK	Agricultural Grassland Neutral Grassland / Improved	GA1 GS1 /	None	25/04/07	15:40	6.96	4.66	2.30	576	7.36	12.3	N/app	Water level too low to purge, small sample
GW	BP10_PH1	Phreatic	Subsoil - CLAV /	Agricultural Grassland	GA1	None	14/04/07		6.91	1 75	5 16			-	N/app	available for HC only.
011		n meduc	BEDROCK	Agricultural Grassland	GA1	None	14/04/07	1	0.31	1.75	5.10				uvahh	
GW	BR10PH1	Phreatic	Subsoil - CLAY /	Neutral Grassland / Improved	GS1 /	None	25/04/07	15:40	6.91						N/app	Dry.

Non-vari	able Moni	toring Data					Variable	e Moni	toring Resu	ilts						
GENERAL	Point ID Monitoring point GEO-UNIT HABITATS & DESIGNATION Monitored					Date	Time	Water levels			Chemistry			Flow Gauging	Comments	
Surface Water (SW) or Groundwater (GW)				Habitat Monitored	Fossitt Habitat Code	Designation (SAC, NHA, SAC & NHA, None)			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	microSiemens/cm @ 25°C (µS/cm)	рН	Temperature (°C)	Discharge (litres / second)	
GW	BR11P1	Piezometer	BEDROCK	Neutral Grassland / Improved	GS1 /	None	25/04/07	18.00	10.85	1.34	9 51	341	6.07	11.4	N/app	Purged 15 litres. Sample moderately cloudy. Good
0		1 1020110101	DEDITOOT	Agricultural Grassland	GA1	1.0110	20/0 //01	10.00	10.00		0.01	0.11	0.07		i wapp	recharge.
GW	BR11P2	Piezometer	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	25/04/07	18:00	10.83	1.30	9.53	354	5.98	11.1	N/app	Purged 15 litres. Sample moderately cloudy. Good recharge.
GW	BR11P3	Piezometer	Subsoil - CLAY / BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	25/04/07	18:00	10.66	1.15	9.51	351	6.14	11.4	N/app	Purged 15 litres. Sample moderately cloudy. Good recharge.
GW	BR11PH1	Phreatic	Subsoils - CLAY	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	25/04/07	18:00	10.61	1.07	9.54	407	6.55	12.5	N/app	Purged 10 litres. Sample very cloudy. Good recharge.
GW	BH3	Phreatic	Subsoil - CLAY / BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		17.01	4.73	12.28	556	5.91	10.8	N/app	Purged 75 litres. Sample moderately clear. Good recharge.
GW	BH5	Phreatic	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		18.19	6.66	11.53	581	6.33	12.2	N/app	Purged 75 litres. Sample moderately clear. Good recharge.
GW	BH10	Phreatic	Subsoil - CLAY / Top of BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		20.21						N/app	WL not available.
GW	BH12	Phreatic	Subsoil - CLAY / BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		13.44	4.25	9.19				N/app	
GW	BH13	Phreatic	Subsoil - CLAY / BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		17.17	7.39	9.78	344	5.70	11.9	N/app	Field inaccessible with vehicle due to ditch break being reinstated, borehole not purged, sampled
GW	BH14	Phreatic	Subsoil - CLAY / BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		13.46						N/app	Dry.
GW	BH18	Phreatic	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		19.25	6.94	12.31				N/app	WL only. Standing water inside metal casing.
GW	BH19	Phreatic	BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		13.12	7.17	5.95	217	5.50	12.4	N/app	Field inaccessible with vehicle due to ditch break being reinstated, borehole not purged, sampled
GW	BH20	Phreatic	Subsoils - CLAY	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		17.98						N/app	Dry.
GW	BH23	Phreatic	Subsoil - CLAY / BEDROCK	Neutral Grassland / Improved Agricultural Grassland	GS1 / GA1	None	26/04/07		13.18	1.69	11.49	314	5.11	11.4	N/app	Purged 45 litres. Sample moderately clear. Good recharge.

PARAMETER / SUBSTANCE		DRINKI	NG WATER	REGULATIONS	Interim Guideline Values (IGV's) - EPA, 2004	Date sampled	«	Investigation Point ID						
	Units	S.I. No.	106 of 2007	,			Investiga							
		Parameter No.	Parameter Category	Parametric Value			BH5	BH10	BH14	BH20	BH23	PW1 (Step Test)	PW1 (Pump Test)	
Alkalinity - total	mg/l				No abnormal change	Jan-07	-	70	80	-	-	40	-	
Chloride - total	mg/l	31	С	250		Jan-07	40	-	40	-	-	41	54	
Electrical conductivity (EC)	uS/cm	34	С	2500 @20°C	1000.00	Jan-07	-	359	360	-	-	-	355	
Nitrate	mg/l	20	В	50.00	25.00	Jan-07	33.8	-	-	34	10.5	11.5	-	
рН	pH units	35	С	>6 & <9.5	>6.5 <9.5	Jan-07	7.70	7.92	7.86	7.05	8.26	7.38	7.88	
Orthophosphate	mg/l				0.03	Jan-07	0.6	-	-	0.27	0.04	0.04	-	
Sodium	mg/l	41	С	200	150.00	Jan-07	23	-	22	-	-	32	40	
Sulphate	mg/l	40	С	250	200.00	Jan-07	16	-	-	15	14	16	19	

=

Exceedences of SI 106 "MAC" values or EPA "IGV" values

Appendix N

No. 1 – View NW toward D1 Valley and SAC area from GPS E101838, N148227.

No. 2 – View W-NW of D1 valley from GPS E102155, N148155.

No. 3 – View N-NW from GPS E102155, N148155 with D1 valley and SAC area in left middle ground of photo.

No. 4 – Cliff exposures along coast N of Lagoon and cobble beach adjacent to Lagoon at GPS E101400, N148420.

No. 5 – Coastal Lagoon (looking E from GPS: E101339, N148337).

No. 7 – Reed and Large Sedge Swamp (looking SE toward D1 valley from GPS: E101640, N148530.

No. 8 – Reed and Large Sedge Swamp (in middleground), D1 in left foreground. Looking E-SE toward D1 valley from GPS: E101640, N148530.

No. 9 – Tidal River, looking up stream (SE) at D1 flowing across cobble beach at GPS: E101497, N148576).

No. 10 – Lower Salt Marsh, looking SW from GPS: E101580, N148540.

No. 11 – Southwest side of Lower Salt Marsh habitat at GC17-PH1 installation (looking NW from GPS: E101570, N148450.

No. 12 – Wet Grassland that fringes the south side of D1 – looking SE from GPS: E101676, N148412

Appendix N

No. 13 – Peat exposure on Beach at northwest side of Lagoon at GPS: E101370, N148400 (approx.).

No. 14 – Close up of Peat exposure on Beach at northwest side of Lagoon at GPS: E101370, N148400 (approx.).

No. 15 – Waterlogged area adjacent to D1 at BR-1 at GPS: E102380, N147974

No. 16 – D1 at SG1 at the eastern site boundary where D1 enters site (GPS: E102397, N147938).

Appendix N

No. 17 – D1 looking downstream at SG-2 (GPS: E102162, N148006).

No. 19 – D1 at SG-4 (GPS: E101895, N148235).

No. 18 – D1 at SG-3 (GPS: E101971, N148176).

No. 20 – D1 at SG-5 looking downstream (GPS: E101832, N148292).

No. 21 – D1 looking upstream from SG-6 (GPS: E101724, N148406).

No. 23 – D1 looking upstream from SG-8 (GPS: E101625, N148487).

No. 22 – D1 looking upstream from SG-7 (GPS: E101662, N148464).

No. 24 – D3 drain looking upstream at GPS: E102162, N148077.

Minerex Environmental Limited

No. 25 – D4 flowing along field boundary toward D2 at GPS: E102060, N148330.

No. 27 – D6 draining west out of Reed and Large Sedge Swamp habitat, looking upstream at GPS: E101605, N148509.

Minerex Environmental Limited

No. 26 – Ponding of water at D5-SW1 at GPS: E101875, N148423.

No. 28 – D9 along field boundary at GPS E101820, N148275.

MEL Doc. Ref. 1946-173.ppt

No. 29 – SP-SW4: Extensive spring / seepage area with wet marshy ground and standing water c.0.3m deep at GPS: E101924, N148493.

No. 30 – SP-SW5: Location at base of field boundary from which spring discharge is occurring (GPS: E102093, N148369).

No. 31 – SP-SW3: spring adjacent to Sedge Swamp area at GPS: E101761, N148493.

No. 32 – D8 flowing NW along roadway, looking downstream NW of GPS: E101471, N148186.

No. 33 – SP-SW1 discharging at base of ditch close to farmyard at GPS: E101471, N148186.

No. 35 – SP-SW2 at base of D7, adjacent to lagoon, looking upstream at GPS: E101497, N148371.

No. 34 – Water pooling along road at base of D8 near beach (D8-SW2) at GPS: E101341, N148335.

No. 36 – Seepage from lagoon across cobble beach on west side of lagoon adjacent to SG-10.

No. 37 – Lagoon water level relatively high at SG-11 on 27^{th} March 2007.

No. 38 – Lagoon water level at SG-11 on 14th April 2007 having dropped considerably since March 2007.

No. 39 – Lagoon water level relatively high at SG-10 on 27^{th} March 2007.

No. 40 – Lagoon Water level at SG-10 on 14th April 2007 having dropped considerably since March 2007.

Minerex Environmental Limited

Arup Consulting Engineers Hydrological and Hydrogeological Impact Assessment of the Shannon LNG Terminal Development at Ballylongford, Co. Kerry

> AIR FLUSH ROTARY PERCUSSION LOGS and INSTALLATIONS

MEL Report Ref.: 1946-156.doc Doc. Ref.: 1946-024.ppt

Appendix F2

		σ			6	BH No.		BR3				
	<u>م</u>	an			l jo	Total Depth	ı (m)	12.0				
	sigr	iter sid	unit es		ica	Date drilled	:	14/04/07				
	De	, yie	on/i Jari		aph	Logged by:		O. Madder	า			
	ole	uno l	unc	2	- gr	Drawn by:		S. Regan				
	Cc	Gro	bo bo	<u>ل</u> ال ا	, VĐ	Drilling Equip	oment	Rotary Core	9			
	Bo	CCU	-	eptł	olo	Drilling Com	pany	IGSL / Mille	nium Drilli	ng		
		• •		Ď	ŭ	Grid Coordin	ates	E101741 N	148198			
P1	PH1 ↓ 0.4	Yield / SWL	Groundwater Occurrence			Lithology (%	%)		Chip Shape	Max. Chip Size (cm)	% Weathering	Geology
	0.5			_		Bn m, GI (30), Sc	d (10), Cy (60)	BI Rd	20	0	Brown Boulder
				_		Bn m, GI (20), Sc	d (20), Cy (60)	BI Rds	15	0	(Upper Till)
						Gy m Sa, GI (30)	, Sd (30), Cy	(40)	BI Ans	20	5	
			Dry			Gy m Sa, GI (30)	, Sd (40), Cy	(30)	BI Rds	18	0	
scree	Ē			5		Gy m Sa, GI (10)	, Sd (20), Cy	(70)	Bl Rds	25	0	Grey Boulder
2" 8	7.7					Gy m Sa, GI (30)	, Sd (40), Cy	(30)	Fl/ Bl An/ Rd	30	0	Clay (Lower Till)
						Gy m Sa/ Si, GI (30), Sd (30),	Cy (40)	BI Ans	20	0	
	₽					Gy d Sa, GI (30),	Sd (30), Cy	(40)	Ob Rd	15	0	
				_		Gy d Sa/ Si, GI (3	30), Sd (30), (Су (40)	BI An/ Rd	22	0	
3.0			Wet	10		Gy d Sa, Gl (30),	Sd (30), Cy	(40)	Bl/ Fl An	25	0	
						Gy d Sa, GI (60),	Sd (20), Cy	(20)	BI Ans	12	0	Dark Grey
			\checkmark			Gy d Sa/ Si, GI (4	40), Sd (30), (Су (30)	FI An	20	0	Sandstone
12.0				_							ЕОН	12.0m
					_	Waterstri	ike@ 9.9n	nbGL				
				15								
					-							
				_								
				_								
					-							
				20								
				_								
				- 1								
				-								
Gono	ral Hoad Dr	otaction		25	and			Hydrological and H	lydrogeolog	l lical Im	nact	
Hinged			lot to scale)		Backfille	ed with drill gs	Title	Assessment of the Terminal Developr	Proposed S	Shanno	on LN ord, Co	G o. Kerry
Flip Cov	/er	and 1 m	Gravel hardcore	33	Bentoni	te pellets	Client	Arup Consulting	Engineers	\$		
Bentonit pellet se	BH Xt and Casil Casil	Upst 0.4	surfacing		Slotted	(1-2mm) uP\/C		Cument No	1946-02	4.ppt		
to 0.5ml	ogl	Gr	ound Level		screen	(1-211111) UF VC				· • • •		
	<u> </u>	X						Mi	nei	re	X	
<u>Notes</u> : - Westla	and pea gravel use	ed for installa	ation				C	Enviro	onmen	tal	Lin	nited

PERCUSSION WINDOW SAMPLING LOGS

1545-024 (Draft 1).ppt

					Jse	BO	REH	OLE	LO	G	PW	/S 3		
			lce		og (l d)	Clie	nt	A	Arup C	onsul	Iting Eng	ineers	6	
Borehole Design &	Soil/ Vapou	Water/ r Sample	intre		cal l egen	Job		1	946 –	B1				
Completion	, apou	i Sumpie	r occ wet)		aphi EL le	Pag	e No.		1 of	f 1				
			lwate: amp, '	(m)	ry - gr ed M	Date Log	e drillec ged by:	1:	26/0 Orla	03/07 agh N	ladden			
		Depth	ound y, dâ	pth	colog	Equi	pment u	sed			PWS			
	No.	Interval	Ğ Ğ	De	Ge api	Doc	ument N	0.			1946-15	56		
						Strength/ Compactness	Bedding & Discontinuities	Weathering/ Freshness	Colour	Gravel shape & composition	Grading & plasticity (fine St & Cl)	Hydro Content	Soil name, e.g. SAND	Additional info: interpretations
	S2	0.0 - 0.4			•	LsF			L Bn/ Gy		Gp	D	Clay	
	S1	0.4 – 1.0		0.5	•	Sf		Dis	L Bn	Rds Sd	Gp	D	Clay	
		1.0 – 1.1		1.5		Re	efusal	on Bo	oulder	/ Be	drock?			
				2.0	ļ									
				_										
				_										
					-									
					Ì									
				_										
				_										
				=										
Well Head Completion	Re	marks			Leg	end				1		1	1	1
-Covered with well head -No installation							 Wate Static Push Cone 	er inflow c water on cap tip	, table	17 (N	Gravel 2-5mm Collaps with ca Benton	pack, no in diam ed Forn vities ite pelle	ominal eter nation ts	
(Measurements in metres) Not to s	cale						C		/i	n	er		X imite	ed

1545-024 (Draft 1).ppt

	•					BOREHOLE LOG	GC-13
	SO	II (S) / \	Water		D	Client	Arup Consulting Engineers
Borehole Desian &	((VV)	/vapo	ur (v)		0	MEL work item	1946 – B1
Completion		Sampli	ng		lica	Page No.	1 of 1
een pronon					aph	Date drilled:	27/03/07
		IZa	e	GL	gra	Logged by:	Orlagh Madden
		nte	awb	dm	- X £	Equipment used	Hand Auger
		GL)	nne	th (olo	MEL Doc. Ref.	1946-156
	ġ)epi	0.00	Jep	0 0 0	Grid Coordinates	E101707 N148394
	2					Description	
				_			
				_		Soft, dark brown, r	peaty CLAY (mottled
				_		organic & peat mix	(ture)
				_			,
				0.5 —	-1-1-1-1		
				0.0			
					-1-1-1-1		
				_			
				1.0 ——			
				-		Sandy, grey, 'marl	y' CLAY
				_			, ,
						Defused on Cabble	
				1.5 ——		Refusal on Cobbie	e / Boulder EOH 1.36m
				_			
				2.0			
				2.5			
				_			
				2.0			
				3.0 —			
				-			
				-			
				3.5 —			
				_			
				_			
				_			
				_			
				4.0	I		-
<u>INOTES:</u>						ΛΛ	in a ray
-Refusal on cobble/ pe	bble						ITIETEY
-Located on drv grassv	grou	ınd.				111	
adjacent to river	9.20	- ' 1				100-	المستعمية المستعمية ومستعمل
						Env	Ironmental Limited

Borehole Design & Completion	Soi (W)	il (S) / V /Vapo Sampli	Water our (V) ing		nical log	BOREHOLE LOG Client MEL work item Page No.	GC-16 Arup Consulting Engineers 1946 – B1 1 of 1
	No.	Depth/interval (mbGL)	Groundwater occurrence	Depth (mbGL)	Geology - graph	Date drilled: Logged by: Equipment used MEL Doc. Ref. Grid Coordinates	27/03/07 Orlagh Madden Hand Auger 1946-156 E101488 N148368
						Light brown, silty, stiff,	dry, dense CLAY with oxide spotting
				_		And some angular quar	tz gravels
						Sandy, grey, 'marly' CL mottling) – gravel at ba	AY with some organic material (black se
			Wet			, , , , , , , , , , , , , , , , , , ,	
				1.0 — —		Refusal on Cobble	e / Boulder EOH 0.83m
				1.5 —			
				20			
				 2.5			
				3.0 — —			
				3.5 —			
				4.0			
Notes: -Refusal on cobble/ bo	ulder					Env	inerex vironmental Limited

Borehol	e	Design & etion	Soi (W)	il (S) / /Vapo Sampli	Water our (V) ing		iical log	BOREHOLE LOG Client MEL work item Page No.	GC-17 Arup Consulting Enginee 1946 – B1 1 of 1	rs
0B17 - PH1	- P -	Upstand: 0.1m	No.	Depth/interval (mbGL)	Groundwater occurrence	Depth (mbGL)	Geology - graph	Date drilled: Logged by: Equipment used MEL Doc. Ref. Grid Coordinates Description	27/03/07 Orlagh Madden Hand Auger 1946-156 E101569 N148455	
								Dark brown, damp, PE	AT with rootlets (H2)	
		0.47m				 0.5 		Grey – brown, stiff, silt Dark brown, soft F	y CLAY PEAT with plant deb	ris (H5)
						1.0 —		Dark brown, soft F	PEAT with plant deb	ris (H8)
								Light – medium br	own, sandy CLAY	
						1.5 —		Sandy / gravelly, g	rey, 'marly' CLAY	
						 2.0 		Refusal on Cobble	e / Boulder	EOH 1.80m
						 2.5 				
						3.0 — — —				
						3.5 — — — —				
Notes:						4.0		Γ.Λ	inoro	
-Refusal	on	boulders							vironmental	X Limited

Common Legend

MEL Report Ref.: 1557-058.doc Doc. Ref.: 1557-024.ppt

Outline of Troels-Smith Classification Scheme (1955) and Von Post Humification Scale (1922)

Troels-Smith: Methods of Description

Physical Characteristics

The Physical characteristics of a sediment are described using a five point scale (i.e. from 0 to 4) for each of the properties outlined below.

 (a) - Nig (Nigror/degree of darkness) Nig 0 = lightest shades (e.g. white) Nig 1 = light shades Nig 2 = medium shades Nig 3 = dark shades Nig 4 = darkest shades (e.g. black) 	 (b) - Strf (Straticato/degree of stratification) Strf 0 = complete homogeniety Strf 1-3 = intermediate stages Strf 4 = very thin minor layers 	 (c) - Elas (Elasticitas/degree of elasticity) Elas 0 = total absence Elas 1-3 = intermediate stages Elas 4 = high elasticity
 (d) - Sicc (Siccitas/degree of dryness) Sicc 0 = clear water Sicc 1 = fully saturated Sicc 2 = saturated Sicc 3 = not saturated Sicc 4 = air dry sediment 	 (e) - Lim (limes/boundaries) Lim 0 = diffuse (>10 mm) Lim 1 = very gradual (<10 mm but >2 mm Lim 2 = gradual (<2 mm but >1 mm) Lim 3 = sharp (<1 mm but >0.5 mm) Lim 4 = very sharp (<0.5 mm))
Sediment Composition		
From the physical characteristics outlined ab deposit composition can be selected from the (a) - Turfa = a macroscopic str (b) - Detritus = consists of 'su (c) - Limus = a microscopic st	ove and by close examination of the constituent particles in basic sediment components outlined below. The provide the provided of the provide	her baceous plants. The not directly attached to root systems. gments, and/or carbonates, and/or iron oxides.

- (d) Argilla = consists of mineral particles <0.06 mm.
- (e) Grana = consists of mineral particles >0.06 mm.
- (f) Substantive humosa = humous substance consisting of completely disintegrated or decomposed organic substances or precipitated humic acids.

Von Post: Outline of Humification Scale

H1	Completely unhumified plant remains, from which only colourless water can be squeezed
H2	Almost unhumified plant remains; water squeezed from the peat is light brown in colour
H3	Very poorly humified plant remains; water squeezed from this peat is cloudy and brown
H4	Poorly humified plant remains; peaty substance does not escape from between fingers when squeezed
Н5	Moderately humified plant remains; the structure is however still very clearly visible; the squeeze water is dark brown and very cloudy while some peat escapes through the fingers*
H6	Strongly humified plant remains; the structure is unclear, about a third of the squeeze escapes through the fingers. The part remaining in the hand has a more defined plant structure
H7	Highly humified plant remains. About half the material escapes through the fingers when squeezed. The water which may escape is dark brown in colour
H8	Very highly humified plant remains. Two thirds of the material escapes through the fingers when squeezed. The remainder consists mainly of resistant bits of roots and wood
H9	Almost completely humified plant remains; almost all the peat escapes through the fingers when squeezed. Structure is almost absent
H10	Totally humified plant remains; amorphous peat, all peat escapes through the fingers when squeezed with no loss of water

* Note: H1-H5 describes the clarity and colour of the water emitted when the sample is squeezed, while H5-H10 estimates the amount of peat passing through the fingers when squeezed, as well as remaining plant structure.

Text based on the following:

•Troel-Smith, J. (1955). Characterisation of unconsolidated sediment. In Dann. Geol. Unders. IV Series. Vol. 3 (10)

•Von Post, L. (1922). SGU (Seriges Geologiska Undersoknings) peat inventory and some preliminary results, Sweden, **36**, 1-37

GENERAL LEGEND, ABBREVIATIONS AND INSTALLATION DETAILS

BEDROCK]		
Metamorphic	bedrock		×***		OVERBURDEN (Description uses BS 5930 and GSI gui	delines)
Igneous bedi	rock				BOULDER(S) (>200mm)	
Sandstone be	edrock				COBBLES (60 to 200mm)	2.2
Siltstone bed	rock				GRAVEL (Homogeneous larger sized	333333
limestone be	arock				particles from 2 to 60 mm)	
Limestone be	BOLOCK				SAND (General if without grain size description)	
COLOUR	-	GRAIN SIZE (Soil)]	Particle sizes: 2 to 0.06mm. Three sub-categories distinguishable to the eye)	
Light Grey Medium Gre	Gy ₁ y Gy _m	Clay (% of) Silt (% of)	C(20) St(20)		Coarse SAND (2-0.6mm)	
Dark Grey Blue/grey	Gy _d Bl-Gy	Sand (% of) Gravel (% of)	Sd(20) G(20)		Medium SAND (0.6-0.2mm)	
Orange/Brow	n Or-Bn	Sand (Fine to Medium)	Sd _{F-M}		Fine SAND (0.2-0.06mm)	• • • • • • • • • •
Black	Bk	Gravel (Fine to Coarse Subangular to angular)	G _{F-C SA-A}		SILT (0.06 0.002mm)	XXXX
MONITORI	ING POINT	COMPLETIONS]		$\underline{\times}\underline{\times}\underline{\times}\underline{\times}$
TS/C1/PH1	Terminal Site	/Couple no./Phreatic no.			CLAYS (<0.002mm)	
PR/C2/P2 H7	Peat Reposit	ory/Couple no./Piezometer	r no.		CONCRETE	
	Push-on cap 18mm ID / 27	mm OD screen			CRUSHED STONE or AGGREGATE or TARMACADAM	****
52	18mm ID / 27 18mm ID / 27	mm OD casing mm OD tip			LANDFILL (eg plastic, glass, wood, domestic waste,	
▼ P2 PH1	Drive cone Piezometer n	o. and Phreatic tube no.			FILL (unspecified)	
	Bentonite pel Gravel pack,	lets nominal 2-5mm in diamete	ər		(
	Wet and dam Static water	ip table			COLLAPSED FORMATION (with possible voids)	
PLAN SKE	<u>FCHES</u>	Vindow Somplor (DW/S) bo	roboloo		LOSS (Blank - white)	
TP1	Hand dug tria	al pits / Shallow pit excavat	tions (JCB)			22222
100 BG	FID in ppm F	lydrocarbons with BG = ba	ackground		TOP SOIL	
99.791	Reduced leve	els - maOD Malin	-		PEAT (General) (with descriptions such as	
	Oil pipeline Storage tank	s (Overground and underg	jround)		(H (Von Post) value associated commonly)	
MONITOR	ING POINT	DESIGN FOR PEAT S	UBSOILS		Duck on formals and	
The cap is	looselv fitted t	o allow easy removal. The	e piezometer is	labelled	using indellible ink inside and outside the cap.	
		A small hole is o	drilled in the sic	de to enal	ble air movement in and out of the piezometer.	
					Casing up-stand	
The up surface w	ostand is the h ater circumsta	eight of the casing above on the piezometer numerication of the piezometer numerication of the second	ground level in mber is scrappe	meters. ed onto th	The height depends on local groundwater and he side of the casing near the cap as with time	
	on the cap we	ears on. Opstands vary no	JIII 0.3 to 1.0III	tin neight	those piezometers positioned at a higher level.	nd level
۱ ۱	The casing is b	lack or dark grey coloured	, flush-threade	d, uPVC.	Casing The OD is 26.80mm and the ID is 18.40. The casing is flush-threaded to the piezometer tip.	of this is ong)
					Tube or Piezometer tin	ion a
This s	ection is install	led opposite the required f	ormation. There	e are two	sections to the piezometer tip. The inner tube	sect 0.03 0.03 iter tube
black color	ured uPVC wit	h 10 x 0.013m diameter h	oles per 0.10m	n of piezo	ometer tip. Therefore the surface area exposed	atic
to th	e formation (p	eat) is small. The piezom	eter tube tip is t	flush-thre	eaded, either male or female, to the piezometer	piez
casing. Thi	eaued part is	o.osm long. The phreatic t	ube up is longe	er man th	level fluctuations.	for p
						0.35
_					Drive cone	
This is	grey coloured	I, solid, uPVC, pushed or s arc	crewed into the ound is soft, a p	e tube or oush-in bi	piezometer tip. No glue has been used. If the $\forall \perp c$ utton cap may be used instead of a drive cone.	\perp
		3	·, ·· F			
NOTER						
The phreatic	tubes are pus	hed by hand into the peat.	The piezome	ters are p	oushed or driven into the peat and mineral soil after a narrow	diameter hole
has been for	med using ove	erburden drilling (Cobra or	Percussion Wi	ndow Sai	mpler) / coring equipment (Gouge corer). The tubes and pie:	zometers have
three main fu	unctions: water	i lable measurements, wat	er sampling, p	ermeabili	ly measurements	
					Mine	rex
					Fnvironm	ental Limite
						entat chinter

_

6	GE		-		GEOTE	:CHN	ICAL CO	RE LOG F	RECO	RD	DDU			12	239
co	D-ORI	DINA	TES(arber	102,235.72 E	shore s	GROUND	LEVEL (m)		17.01	- SHEE DATE	START	ED	Shee 20/11	13 et 1 of 3 1/2006
CL	IENT	ER	S	hanno rup Co	on LNG	s	INCLINATI	ON		-90 AIR/MIST	DRILL	ED BY	EIED	Miller IGSL	nnium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Desci	ription	Depth (m)	Dise	continuities	à	Elevation	Standpipe Details	SPT (N Value)
0							SYMMETRIX DRILLING: (driller as retu gravel.	OPEN HOLE Observed by rns of clay and	đ						N = 12 (3, 2, 4, 2, 3)
3						0000	SYMMETRIX	OPEN HOLE	3.20	5			13.81		N = 18 (4, 2, 4, 5 6)
	3.80	100	80	76	-		DRILLING: 0 driller as grav of sandstone,	Observed by vel size returns /siltstone .	3.80	Disconti	nuities are	rough	13.21		
4	4.30	100	UL.	10	-		Strong to loca and very loca	ally very strong Ily moderately		to smoo locally u Aperture	th and plan ndulose. es are oper	n to			
5		100	69	48			strong, thin to bedded, grey SANDSTONE with fine-grain Fresh to sligh	o medium , fine grained E, interbedded ned siltstone. itly weathered		locally ti open wi smeared 6.82m-6 Dips are	ght to mod h locally cl d (4.46m, .86m) surfa 10° and lo	ay aces. acelly			
6	5.90				E					90° (7.9 (4.9m, 6	.42m, 6.52	x 45° m).			
7		100	51	14											
	7.50	100	75	41											
8	8.30		-			× × × ×	Moderately st	trong to strong	8.30				8.71		
9	9.30	100	73	37	Ę	*****	thin to mediate black/dark gro SILTSTONE/ Fresh to local weathered.	m bedded, ey, fine graine MUDSTONE. lly slightly	d						÷
REI	MAR	KS				× × × ×		INSTALLAT	ION REP	MARKS					
Wa	terstr re bo	ike a xes.	at 3.0	m (20	/11/06); Water a	t 2.4m	21/11/06). 12								
								GROUNDWA	ATER DE	TAILS					
								Date	Hole Depth	Casing Depth	Depth to Water	Comn	nents	_	-
NS	TAL	ATI	ON D	ETAI	LS		-	20-11-06 21-11-06			3.00 2.40	Water Stand	strike ing		
1	Date	T	ip De	epth F	RZ Top RZ Base	-	Гуре					0.0			

co	NTR	ACT	7	arbe	rt/Ballylongford On	shore	SI CROUND I			17.01	DRILL SHEET	HOLEN	0	RC03 Sheet	2 of 3
co	-ORI	DINA	TES	(_)	102,235.72 E 148,616.25 N		CORE DIA	METER (mm)		102	DATE	COMPLE	TED	20/11/	2006 2006
CLI	ENT	ER	S	ihann rup C	ion LNG Consulting Engineer	s	INCLINATI FLUSH	ON		-90 AIR/MIST	DRILL	ED BY ED BY		Millen	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 0 ²⁵⁰ 500	Legend	Descr	iption	Depth (m)	Dise	continuities		Elevation	Standpipe Details	SPT (N Value)
10	10.90	100	93 41	9		******	Moderately si and locally m thin to mediuu black/dark grr SILTSTONE/ Fresh to loca weathered. (c	trong to strong oderately wea m bedded, ay, fine graine MUDSTONE. Ily slightly <i>slightly</i> <i>sontinued</i>)	k, d	Disconti smooth locally u Aperture moderal locally o iron oxic (8.3m-9 clay smo (10.85m 14.28m, surfaces and loca	nuities are and planar ndulose. es are tight ely open ar pen with loo e stained 3m) and lo aared -10.95m, 15.86m-15 . Dips are Ily 90° (to to ad cally cally 5.92m) 10°			
13	4.10	100	68	6		*******				10.95m- 12.05m- 14.28m- 16.45m- 20.11m- 23.95m- 24.6m-2 <i>(continu</i>)	11.71m, 12.12m, 14.35m, 16.54m, 20.19m, 24.1m, 4.75m), ad)				
15		100	86	21	È.	*****									•
16 17	5.70	100	75	30		*****									
18	7,30	100	97	56		*****									
19	8.90	100	74	61		******									
Nat	erstr	(S ike a	t 3.0	m (20	0/11/06); Water a	t 2.4m	(21/11/06). 12	INSTALLATI	ON REM	ARKS			-		
Core	e box	kes.						Cuton never	1000				_		_
								GROUNDWA	Hole	Casino	Denth to				1
								Date	Depth	Depth	Water	Comm	ents		_
NST	FALL	ATIC	DN D	ETAI	LS										

co	-ORI	DINA	TES	arber	t/Ballylongford Or 102,235.72 E 148,616.25 N	hshore :	GROUND L	.EVEL (m) METER (mm)	1	7.01	DRILL SHEET DATE DATE	STARTI	ED ETED	RC03 Sheet 20/11/2 22/11/2	3 of 3 2006 2006
CLI	GINE	ER	S	hann rup C	on LNG onsulting Engineer	s	INCLINATI FLUSH	ON	-	90 NR/MIST	DRILL	ED BY ED BY		Millenr IGSL	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) o ²⁵⁰ 500	Legend	Descr	iption	Depth (m)	Dis	continuities		Elevation	Standpipe Details	SPT (N Value)
20	20.30	100	91	81		****	Moderately st and locally m thin to mediu black/dark gro SILTSTONE/ Fresh to local weathered. (c	rong to strong oderately weak, m bedded, ey, fine grained MUDSTONE. Ily slightly ontinued)		Discont smooth locally L Apertur modera locally c iron oxid (8.3m-9 clay sm	inuities are and planar indulose. es are tight tely open ar open with loo de stained .3m) and loo eared	to to nd cally cally			
22	21.90	100	80	61		******				14.28m surfaces and loca 10.95m 12.05m	, 15.86m-15 s. Dips are ally 90° (-11.71m, -12.12m	i.92m) 10°			
23	23.00	100	73	69		******				14.28m 16.45m 20.11m 23.95m 24.6m-2	-14.35m, -16.54m, -20.19m, -24.1m, -24.75m)				
24	24,40					*****				(continu	ed)		3		
25	25.10	100	53	53		****	End of Coreb	ole at 25.1 (m)	25.10				0.00		
							End of Corea	510 at 25.1 (m)					-0.03		
26															
27															30
28															
20															
-9															
REN	AR	KS		_				INSTALLATIO	N REM	ARKS			2		
Corr	e box	ike a kes.	13.0	m (20	0/11/06); Water a	t 2.4m	(21/11/06). 12								
								GROUNDWAT	ER DET	AILS		-			
									1010	and the second s	10.00				

51

CO-ORDINATES(_) 102,313.82 E 148,662.47 N GROUND LEVEL (m) 17.91 CLIENT Shannon LNG INCLINATION -90 ENGINEER Arup Consulting Engineers Fracture Fracture (u) (u) (u) Fracture Description (u) (u) (u) (u) (u) (u) Fracture Description (u) (u)	DATE STARTE DATE COMPLE DRILLED BY OGGED BY	ED ETED	22/1	1/2006	
CLIENT Shannon LNG INCLINATION -90 ENGINEER Arup Consulting Engineers Fracture Flush POLYMER GEI (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) (u) </th <th>ORILLED BY</th> <th></th> <th></th> <th>1/2006</th>	ORILLED BY			1/2006	
Image: New Year of the second seco			Millennium IGSL		
0 Image: Symmetric condition of clay and gravel. 1 Image: Symmetric condition of clay and gravel.	uities	Elevation	Standpipe Details	SPT (N Value)	
1.50 X × X Moderately strong to locally moderately weak, thinly Discontinuitie smooth and p 2 100 0 0 X × X moderately weak, thinly smooth and p 100 0 0 X × X grey/dark grey/black, fine rough. Apertu 3 100 0 0 X × X grained tight to locally 3 X × X SILTSTONE/MUDSTONE. (especially 1.3) X × X and locally classmeared surfa 3 X × X X × X X × X and locally classmeared surfa are sub-horiz	are anar to locally res are open m-3.5m), stained y/silt ces. Dips ntal and	16.41		(25, 50)	
3.50 x x x x x x x x x x x x x x x x x x x	are rough locally				
5 5.00 x planar. Aperture 100 20 0 x commonly iror 5 100 20 0 x 5 x x commonly iror 5 x x commonly iror <t< td=""><td>ires are en with oxide cally ared) surfaces. 5° and tical</td><td></td><td></td><td></td></t<>	ires are en with oxide cally ared) surfaces. 5° and tical				
6.50 100 90 24 100 90 90 24 100 90 90 90 90 90 90 90 90 90 90 90 90 9	m-4.9m,				
			Intrintritt		
9.60		XXX			
EMARKS INSTALLATION REMARKS // aterstrike at 4.2m (22/11/06); Water at 1.3m (23/11/06), 17					
preboxes					
GROUNDWATER DETAILS	to			_	
Date Depth Depth Wat	er Commer	nts			
ISTALLATION DETAILS 4.2 Date Tip Depth RZ Top RZ Base Type 3/11/2006 9.50 2.00 9.50 50mm SP) Standing	g g			

(10)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	A.L			GEOTE	CHN	ICAL CO	RE LOG F	RECOR	RD			REP	ORT NU	MBER
co	NTR	ACT	τ	arber	t/Ballylongford On	shore	SI				DRILLH	OLEN	10	RC05	5
co	-ORI	DINA	TES	(_)	102,313.82 E 148,662.47 N		GROUND I	LEVEL (m) METER (mm)	DATE S	HEET DATE STARTED DATE COMPLETED			Sheet 2 of 3 22/11/2006 23/11/2006		
CLIENT Shannon LNG INCLINATIO								ON		DRILLED BY Mille ELOGGED BY IGS			Millen IGSL	nnium	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 0 ²⁵⁰ 500	Legend	Descr	ription (E) Discon		ntinuities	tinuities tinuities		Standpipe Details	SPT (N Value)	
10		100	78	58			Strong to locally moderately strong and locally very strong, thin to medium bedded, grey/dark grey, fine grained		y e	Discontinuities are smooth and planar to undulose and locally slightly rough. Apertures are tight to moderately		o ures ely	7.91		
12	11.10	100			(possible fine-grained sandstone lenses at 23.0m-27.5m). Fresh to slightly weathered.			with locally iron oxide stained (10.0m-11.1m). Dips are -0°-30° and locally 90° fractures (10.82-10.9m, 11.14m-11.24m, 18.29m 19.44m,							
13	12.60	100					18.28m-18 19.05m-19 21.13m-21	.41m, .42m, .22m).	12m, 12m). 12m).						
14	14.10	100	97	76		*******									
16	15.70	100	82	80	Ł	*****									
17	7 17.00	100	89	78	È	**********									
19	18.60														
REN	AR	KS	4.4.0	-		10.01	(00/11/00) 15	INSTALLAT	ION REM	ARKS				ix co	
core	ebox	es	it 4,2	am (22	(11/06); Water a	(1.3m	(23/11/06). 17								
								GROUNDWA	ATER DE	TAILS					
								Date	Hole Depth	Casing Depth	Pepth to Water	Comm	nents		
NS	TAL	ATI		ETAI	LS	-									
1	Date	T	ip De	epth F	RZ Top RZ Base		Туре					1			
23/1	1/20	006	9.5	0	2.00 9.50	50	mm SP								

~~	ONTR	ACT	TEC	arberi	t/Ballylongford On	shore	GROUND	LEVEL (m)		17.91	DRIL	LHOLE I	IO RC05 Sheet 3 of 3		
		DINA	1ES	(_)	102,313.82 E 148,662.47 N		CORE DIA	AMETER (mm)	DATE	DATE STARTED 22/11/200 DATE COMPLETED 23/11/200					
CL	GINE	ER	S	Shanno Tup Co	on LNG onsulting Engineer	5	INCLINAT FLUSH	ION	DRILLED BY Millen				nlum		
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 250 500	Legend	Desc	ription	() Discont		ntinuities	ties		Standpipe Details	SPT (N Value)
20	20.20	100	91	83	Ł	*******	Strong to loc strong and lo strong, thin t bedded, grey grained SILTSTONE (possible fine sandstone le	cally moderately locally very to medium ay/dark grey, fine E/MUDSTONE enses at brance cally moderately smooth and undulose an slightly roug are tight to r open and lo with locally i enses at			ies are I planar to nd locally gh. Apertures moderately ically open iron oxide (m-11 1 m)				
22	21.70	100	97	89	E	****	23.0m-27.5m slightly weati (continued)	n). Fresh to hered.		Dips are -0 locally 90° (10.82-10.9 11.14m-11, 18.28m-18, 19.05m-19, 21.13m-21,	°-30° and fractures Jm, .24m, .41m, .42m, .22m).				
23	23.30	100	95	88	630	****									
25	24.90	100	100	100		*****									•
26	26.50	100	75	84		****			27.50						
26		100	1			xx			121.001					VIIA	
26 27 28	27.50	100	73	58	680	<u>x</u> x	Strong to ven medium bedd locally dark g grained SANI minor siltston slightly weath	y strong, thin to led, grey and rey, fine DSTONE (with e). Fresh to ered.	27.00	Discontinuit to locally sn undulose. A open to mo Dips are 10 90° fracture	ies are nooth a Aperture derately ° and lo s.	rough nd es are / open. ocally	-9.59		
26 27 27 28 29 2 29 2	9.40	100	73	58	680	Ŷ Ŷ.	Strong to ven medium bedd locally dark g grained SANI minor siltston slightly weath	y strong, thin to led, grey and rey, fine DSTONE (with e). Fresh to ered. ole at 29.4 (m)	29.40	Discontinuit to locally sn undulose. A open to mod Dips are 10 90° fracture	ies are nooth a Aperture derately ° and lo s.	rough nd es are / open. ocally	-9.59 -11,49		
26 27 28 29 29 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20	9.40 MARK	100 (S ke al	73 t 4.2r	58 n (22/	680 11/06); Water at	2 2 1.3m (Strong to ven medium bedd locally dark g grained SANI minor siltston slightly weath End of Coreh 23/11/06). 17	y strong, thin to led, grey and rey, fine DSTONE (with e). Fresh to ered. ole at 29.4 (m) INSTALLATIO	29.40 N REMA	Discontinuit to locally sn undulose. / open to mor Dips are 10 90° fracture	ies are nooth an Aperture derately ° and lo s.	rough nd es are / open. / cally	-9.59		
26 27 28 29 29 2 29 2 29 2 29 2 29 2 29 2	9.40 MARK erstri boxe	100 (S ke al	73	58 n (22/	680 11/06); Water at	9. 9 . 1.3m (:	Strong to ven medium bedd locally dark g grained SANI minor siltston slightly weath End of Coreh 23/11/06). 17	y strong, thin to led, grey and rey, fine DSTONE (with e). Fresh to ered. ole at 29.4 (m) INSTALLATIO	29.40 N REMA	ARKS	ies are nooth a Aperture derately ° and lo s.	rough nd es are / open. / cally	-9.59 -11,49		

6	G	SL)			GEOT	ECHN	IICAL CO	ORE LOO	RE	CO	RD				12	239						
co	NTR	ACT		Tarbe	ert/Ballylongford O	nshore	SI			-		DF	ILLHOLE	NO	12 NO RC She ED 06/1 IGSI United IGSI United IGSI ISJ9 ISJ9 ISJ9	10						
co	-OR	DINA	TES	(_)	102,438.56 E 148,626.09 N		GROUND CORE DI	D LEVEL (m) AMETER (m)	m)		19.59 84	DA DA	EET TE STAR TE COMP	TED	06/1 07/1	et 1 of 4 2/2006 2/2006						
CLIENT Shannon LNG INCLINA ENGINEER Arup Consulting Engineers FLUSH								INATION -90 SH AIR/MIST				DF	DRILLED BY LOGGED BY			Millennium						
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	Fracture Spacing % % (mm) O O O O E D O D O C O O C O O O O O O O O O O O O		Des	escription			Discontinuities		lies	Elevation	Standpipe Details	SPT (N Value)								
0 1 2 3													SYMMETRI DRILLING: driller as ret gravel.	IX OPEN HO Observed b turns of clay :	LE y and							N = 28 (4, 4, 6, 6 9) N = 29 (3, 5, 5, 7, 9)
1	1.40	100	81	62	E.		SYMMETRI DRILLING: driller as gra of sandstone sandstone b Strong to ve thickly (local	TRIX OPEN HOLE NG: Observed by s gravel size returns stone. Probable one bedrock. to very strong, thin to locally thinly		4.20	Discontinuities are smooth and planar to locally undulose. Apertures are tight to open with locally clay smeared surfaces. Dips are 45° and locally 00°			_15.39 15.19								
5	.90	100	96	84			laminated) b blue to dark grained SAN interbedded bedded/lami and weaker mudstone. F and locally m weathered.	edded, grey grey, fine IDSTONE with thinly nated siltstor dark grey Fresh to sligh noderately	ne ntly		are 45° fracture	and loca s.	IIÀ 90°									
*	.30	100 87 64 530 100 100 88																				
8	.80																					
EM/ ate	ARK	S 4.65	m (6,	/12/0	6), 6.72m (7/12/06	6) & 5.71	m (7/12/06).	INSTALLA	TION	REMA	ARKS			<u> </u>	V/A							
2 Co	ore t	ooxe	5,					GROUNDW		DET	All S			_								
								Date	Hol	e	Casing	Depth t	0 Comm	nente	_							
ST	ALL	ATIC	N DI	TAI	.S		-	06-12-06 07-12-06	Dep	th	Depth	4,65 5,70	Standi	ing		7						
c	ONTE	DINA	ATES	[arbe	nt/Ballylongford Or 102,438.56 E 148,626.09 N	nshore	GROUNI CORE D	D LEVEL (m) AMETER (mm)		19.59 84	DRIL SHE DAT DAT	LHOLE N ET E STARTI E COMPL	ED ETED	RC10 Sheet 06/12/ 07/12/) 2 of 4 2006 2006							
--------------------	----------------------------------	--	-------------	-----------------	---	--	---	--	---	---	--	--------------------------------------	------------	-----------------------------------	-----------------------------							
E		EER	4	Shanr Vrup C	on LNG onsulting Enginee	s	FLUSH	TION		-90 AIR/MIST	DRIL LOG	LED BY GED BY		Millen	nium							
Downhole Denth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Des	cription	Depth (m)	Di	scontinuitie	95	Elevation	Standpipe Details	SPT (N Value)							
11	111.50	90 100 86 67 50 100 96 84 00				Strong to ve thickly (loca laminated) blue to dark grained SA interbedded bedded/lam and weaker	ery strong, thin to illy thinly bedded, grey c grey, fine NDSTONE I with thinly inated siltstone dark grey		Discon smooth locally Apertur open w smeare are 45° fracture	tinuities and and plana undulose. res are tigh vith locally of ad surfaces and locall es. (continu	e ar to clay s. Dips y 90° ved)											
12	12.00	100	96	84	5	50	mudstone. and locally i weathered.	Fresh to slightly moderately (continued)														
13	3 13.00 4 14.50	100	100	74																		
15	14.50	00 100 100 74 50 100 100 100 860																				
16	14.50 5 10 8 16.00 7	100	97	84		0																
8	17.60	100	96	68	56										÷							
	19.20																					
El /a 2 (MARK ter at Core	4.65 boxe	m (6/ s.	12/06	5), 6.72m (7/12/06	5) & 5.7	m (7/12/06).	INSTALLATIC	N REM	ARKS			K									
								GROUNDWAT	ER DET	AILS												
								Date	lole	Casing	Depth to	Comme	ints									

Þ		
A A A A A A A A A A A A A A A A A A A	1022 GDT 9/3/07	
	12239.GPJ	
	A PER PG	
1	06 101	
	NEWL	

cc	DNTF	DIN	ATES	Tarbe	rt/Ballylongford On 102,438.56 E 148,626.09 N	shore S		LEVEL (m) AMETER (mn)	19.59 84	DRIL SHEI DATI DATI	LHOLE N ET E STARTI E COMPL	ED ETED	RC10 Sheet 06/12 07/12	0 3 of /2006 /2006
CL	IENT	ER	\$	Shani Arup (non LNG Consulting Engineers	5	INCLINAT FLUSH	TION		-90 AIR/MIS	DRIL T LOG	LED BY GED BY		Millen	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Desc	cription	Depth (m)	D	iscontinuitie	s	Elevation	Standpipe Details	
20	20.80	100	98	71	70		Strong to ve thickly (local laminated) b blue to dark grained SAN interbedded bedded/lami and weaker mudstone. If and locally m weathered. (ry strong, thin ly thinly bedded, grey grey, fine NDSTONE with thinly inated siltstor dark grey Fresh to sligh noderately 'continued)	e tiy	Discon smoot locally Apertu open smear are 45 fractur	ntinuities are h and plana undulose. ures are tigh with locally o ed surfaces of and locally res. (continuity)	e r to t to slay . Dips y 90° ed)			
23	22.40	100	97	84	E										
25	25.60	100	94 99	82	780										
27	27.10 27.40	100	100	40											
28		100	100	100	770										
29 2	8.90	100	97	97	860								01110111		
REN	ARK	s						INSTALLA	TION REA	MARKS			R	KUN	
Wat	er at	4.65 boxe	m (6 s.	/12/0	6), 6.72m (7/12/06)	& 5.7n	n (7/12/06).								
12 0								CROUNDW	ATCO DO	TAUC			_		
12 0								anounder	ATER DE	ALS					

-	NTR	ACT	Т	arbert/	Ballylongford On	shore S	al l				DRILL	HOLE N	0	RC1 Shee	10 et 4 of 4
co	OR	DINA	TES(_)	102,438.56 E 148,626.09 N	1	GROUND LEVE	- (m) :R (mm)	1 8	9.59 14	DATE	STARTE	ED ETED	06/12 07/12	2/2006 2/2006
CLI	GINE	ER	S	hanno rup Co	n LNG nsulting Engineers		INCLINATION FLUSH		4	90 AIR/MIST	DRILL	ED BY		Mille IGSL	nnium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) ²⁵⁰ 500	Legend	Description	D	Depth (m)	Disco	ntinuities		Elevation	Standpipe Details	SPT (N Value)
30	30.50					***** **** ****	End of Corehole at	30.5 (m)	30.50				-10.91		
32															
33															
14															
15															÷
	1														
6															
7															
86															
86 17 8															
7 7 8 9	ARK	s					INST	ALLATION	REMA	RKS					
7 8 9 EM	ARK er at oore t	S 4.65r poxes	m (6/	12/06)	, 6.72m (7/12/06)	& 5.7r	INST n (7/12/06).	ALLATION	REMA	RKS					
8 9 EM 2 C	ARK er at t	S 4.65r ooxes	m (6/	12/06)	, 6.72m (7/12/06)	& 5.7r	n (7/12/06).	ALLATION	REMA	RKS					

C	ONTR	RACT		arbert	/Ballylongford Or	shore	SI				DRIL		10	RC	2
c	D-OR	DINA	TES	(_)	102,373.94 E 148,688.95 N		GROUND CORE DI	LEVEL (m) AMETER (mm)	1	13.06 84	DATE	START COMPL	ed .eted	15/12 16/12	2/2006 2/2006
CL	IEN	ER	A	Shanno Trup Co	on LNG onsulting Engineer	S	INCLINA FLUSH	TION		-90 AIR/MIST	DRIL	LED BY GED BY		Mille IGSL	nnium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Des	cription	Depth (m)	Di	scontinuities	5	Elevation	Standpipe Details	SPT (N Value)
0 1 3							SYMMETRI DRILLING: driller as ret gravel.	X OPEN HOLI Observed by urns of clay ar	E 10						N = 20 (7, 6, 4, 8 5) N = 25 (6, 7, 5, 8 7) N = 20 (3, 4, 3, 5 8)
5	5.50	100	23	0			SYMMETRI: DRILLING: driller as gra of sandstone sandstone b	X OPEN HOLE Observed by vel size return e. Probable edrock.	s <u>5.50</u>	Discont smooth and pla	tinuities are to locally re nar to local	ough	8.06 7.56		
7	6.50	80	60	12	-		to locally thir grey/dark gre SANDSTON with siltstone (5.5m-10.0m Fresh to loca	ly subrig, trick ily bedded, ey, fine grained interbedded layers a, 17.0m-17.5n ally slichtly	יעיי לי ו n).	undulos tight to commo iron oxi locally o surface	se. Apertur locally oper nly modera de stained clay smeare s. Dips are	es are n with tely and d			
	7.50	100	18	0			weathered.			45°-60°	fractures.	locally			
8	8.10	100	88	0											
9	8.60	100	46	9											
	9.70	10						Internet		Bure			_		-
Na	terstr	ike a	t 5.0	m. 6 C	Core boxes.			INSTALLAT	ION REM	AHKS			-		
								GROUNDW	ATER DET	AILS					
								Date	Hole	Casing	Depth to	Comm	ents		
								15-12-06	Depth	Depth	5.00	Wator	strike		

		ACT		Tarber	t/Ballylongford On	shore	SI			12.02	SHE	ET	10	RC12 Sheet	2 2 of 3
20-	-OR	DINA	TES	(_)	102,373.94 E 148,688.95 N		CORE DI	AMETER (mm)		13.06 84	DAT	E STARTI	ED ETED	15/12/ 16/12/	2006 2006
CLI	ENT	ER	5	Shann Arup C	on LNG onsulting Engineers	5	INCLINA FLUSH	TION		-90 AIR/MIS	DRIL T LOG	LED BY GED BY		Millen	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 0 250 500	Legend	Des	cription	Depth (m)	D	iscontinuitie	s	Elevation	Standpipe Details	SPT (N Value)
10		100	88	68			Strong to ve to locally thi grey/dark gi SANDSTOI with siltston	ery strong, thickl inly bedded, rey, fine grained NE interbedded e layers n 17.0m 17.5m	y	Discor smoot and pl unduk tight to	ntinuities are h to locally anar to loca ose. Apertu o locally ope	e rough Ily res are n with			
12	2.20	100	100	79	740		Fresh to loc weathered.	(continued)		iron ox locally surfac sub-ho 45°-60	kide stained clay smear es. Dips ar prizontal and of fractures.	and ed e i locally			
13		100	98	81	960						ueu)				
4	3.70	100	90	81	620										
5	+.70	100	94	91											
6 16 7	5.20	100	98	62											
17	7.50	100	100	0											
17	.80	100	73	0											
18	9.50	100	91	91	De la companya de la										
EM/	ARK	S						INSTALLATIO	ON REM	ARKS			R		_
ate	rstri	ke at	5.0	n. 6 C	Jore boxes.			1							
								GROUNDWAT	ER DET	AILS					

cc	DONTR	DINA	TES	arber	102,373 94 F	ishore S	GROUND	LEVEL (m)		13.06		SHE	LHOLE ET	NO	RC1 Shee	12 et 3 of 3
			-		148,688.95 N		CORE DI	AMETER (mr	n)	84	1	DAT	E COMP	LETED	16/12	2/2006
EN	GINE	ER	A	hanne rup Ce	on LNG onsulting Engineer	s	FLUSH	TION		-90 AIR/M	IST	DRIL	LED BY GED BY		Miller IGSL	nnium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 0 ²⁵⁰ 500	Legend	Des	cription	Depth (m)	6	Discon	tinuitie	S	Elevation	Standpipe Details	SPT (N Value)
21	20.00	100	91	79												
-	21.50						End of Core	hole at 21.5	(m)	50				-8.44	2///25	
22																
23																
24																
25																
26																
27																
																•
8																
9										-						
9								Catalan and							-	
9 EM/	ARK	S re at	5.0m	1. 6 C	ore boxes.			INSTALLA	TION REA	ARKS		_				
⁸ 9 EM/ ate	ARKs	s re at	5.0m	1. 6 C	ore boxes.			INSTALLA GROUNDW	TION REN	TAILS						

6	600					GEOTI	ECHN	ICAL CO	RELOG	RE	COF	RD				12	239
co	NTR	ACT		Farbe	ert/Ballyle	ongford Or	nshore	SI					DRIL	LHOLE	NO	RC	13
co	OBI	DINA	TES	11	102.5	07 25 E		GROUND	LEVEL (m)	-	1	17.08	SHE	T	ED	Shee	et 1 of 3
	- Crin	Chur		-/	148,7	09.38 N		CORE DIA	AMETER (mr	m)		84	DAT	COMP	LETED	10/1	2/2006
CLI	ENT	-	5	Shan	non LNG	3	_	INCLINAT	ION			-90	DRIL	LED BY		Mille	nnium
EN	GINE	ER	1	Arup	Consultin	ig Engineer	s	FLUSH	_			AIR/MIST	LOG	GED BY	-	IGSL	-
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fra Sp: (r	acture acing nm)	Legend	Desc	cription		Depth (m)	Dis	continuitie	s	Elevation	Standpipe Details	SPT (N Value)
1 2 3 4 5 5	3.90	100	% (mm) % (mm) 0 250 0 0 <t< td=""><td> </td><td>SYMMETRID DRILLING: driller as retu gravel. SYMMETRID DRILLING: d driller as grav of siltstone/muc Probable bec Strong to vere locally moder (within 3.9m- to locally thin bedded, grey</td><td>K OPEN HOI Observed by Jrns of clay a K OPEN HOI Observed by vel size retur dstone/sands drock. ry strong and rately strong rately strong rately strong (12.6m), thic iy (3.9m-12. //dark grey, f</td><td>LE / and stone / kly 6m) ine</td><td><u>3.60</u> <u>3.90</u></td><td>Discont to smoo Apertur modera locally o oxide st 3.9m-12 22.52m smeare 5.32m-5</td><td>inuities are th and unc es are tigh tely open a pen with in ained (bel 2.6m & 20.) and local d (5.08m-5</td><td>e rough Julose. t to und on ween 9m, y clay .23m,</td><td>13.48 13.18</td><td></td><td>N = 44 (3, 4, 7, 10 12, 15) N = 37/15(mm (7, 7, 10, 1 15)</td></t<>			SYMMETRID DRILLING: driller as retu gravel. SYMMETRID DRILLING: d driller as grav of siltstone/muc Probable bec Strong to vere locally moder (within 3.9m- to locally thin bedded, grey	K OPEN HOI Observed by Jrns of clay a K OPEN HOI Observed by vel size retur dstone/sands drock. ry strong and rately strong rately strong rately strong (12.6m), thic iy (3.9m-12. //dark grey, f	LE / and stone / kly 6m) ine	<u>3.60</u> <u>3.90</u>	Discont to smoo Apertur modera locally o oxide st 3.9m-12 22.52m smeare 5.32m-5	inuities are th and unc es are tigh tely open a pen with in ained (bel 2.6m & 20.) and local d (5.08m-5	e rough Julose. t to und on ween 9m, y clay .23m,	13.48 13.18		N = 44 (3, 4, 7, 10 12, 15) N = 37/15(mm (7, 7, 10, 1 15)		
6 (7 8	5.80 6.40 100 8.00	100	48 90 95	80 84			****	granted SANDSTONI interbedded i siltstone laye (3.9m-12.6m locally slightly and locally m weathered (v 3.9m-6.4m).	E/SILTSTON with mudstor rs). Fresh to y weathered ioderately vithin	NE		12.56m Dips are 10° and	12.6m) su e sub-horiz locally 45'	rfaces. ontal to			
	.50						*****				6						
		11					* * *		-								
EN	ARK	(S	+0.0	Err /	0/10/00	· 10/-1	E OF-	10/10/00 0	INSTALLA	TION	REM	ARKS					
ore	box	kes.	. 0.6	om (3/12/06)	, water a	5.25m	(10/12/06). 9									
									GROUNDY	VATER	R DET	AILS					
									Data	Ho	ole	Casing	Depth to	Com	nonte		
									09-12-06	De	pth	Depth	Water	Water	strike		
IST	ALL	ATIO	DN D	ETA	LS		-		10-12-06				5.25	Stand	ing		
D	ate	T	ip De	epth	RZ Top	RZ Base		Type						100			
0/1:	2/20	06	9.0	0	1.00	9.00	50r	nm SP					14.44				

co	D-OR	DINA	TES	arbe	102,50 148,70	ongford O 07.35 E 09.38 N	ishore	GROUND CORE DI	LEVEL (m) AMETER (mm)		17.08 84	DRIL SHEE DATE DATE	LHOLE N ET E STARTI E COMPL	ED ETED	RC13 Sheet 08/12/ 10/12/	3 2 of 3 2006 2006
EN	GINE	EER	A	Shanr Grup C	on LNG	i g Enginee	s	FLUSH	TION		-90 AIR/MIST	DRIL	LED BY GED BY	e	Millen IGSL	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fra Spa (n	cture acing nm) ⁵⁰ 500	Legend	Desc	cription	Depth (m)	Dis	continuitie	S	Elevation	Standpipe Details	SPT (N Value)
10	11.00	100 100 97 Strong 100 100 97 Strong 100 100 97 Strong 100 100 97 Strong 100 71 59 Strong 100 71 Strong Strong				Strong to ve locally mode (within 3.9m to locally thir bedded, gre grained	ery strong and erately strong -12.6m), thickly nly (3.9m-12.6m) y/dark grey, fine		Discont to smoo Apertur modera locally c oxide st	inuities are oth and und es are tight tely open a open with ir ained (bet	rough Julose. t to ind on ween					
12	11.00	100	71	59	F		*******	SANDSTON interbedded siltstone laye (3.9m-12.6m locally slight and locally n weathered (s	IE/SILTSTONE with mudstone ers n), Fresh to ly weathered noderately within		3.9m-12 22.52m smeare 5.32m-5 12.56m Dips are 10° and	2.6m & 20.1) and locall d (5.08m-5 5.36m, -12.6m) su e sub-horiz locally 45°	9m, y clay .23m, rfaces. ontal to			
13	12.60	100	100 71 59 x sillstone (3.9m-1) locally s 100 100 93 x x 100 100 100 100 x	3.9m-6.4m),	(continued)		(continu	ed)								
14	14.10	100	100	100		.56										
16	5.50	100														
7 1	7.00	100	100	92		57	*****									3.
18	8.60						*****									
		100	100	94		76	******									
EN	erstr	ike a	t 0.6	5m (9	9/12/06);	Water a	5.25m	(10/12/06). 9	INSTALLATIC	N REM	ARKS					
Vat		200							-	-						
Vat Core									GROUNDWAT	ER DEI	AILS					

C	ONTE	RACT	1	arbei	t/Ballylongford C	nshore	SI			-		DRIL	LHOLE	10	RC1	3
C	0-0R	DINA	TES	(_)	102,507.35 E 148,709.38 N		GROU	ND LEVEL (m) DIAMETER (m	im)	1	17.08 84	DATI	E START	ED .ETED	08/12 10/12	/2006 ⁻ /2006
CL	IEN	ER	A	ihann rup C	on LNG onsulting Enginee	rs	FLUSH	ATION			90 AIR/MIST	DRIL	LED BY GED BY		Millen IGSL	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	D	escription		Depth (m)	Di	scontinuitie	s	Elevation	Standpipe Details	SPT (N Value)
20	21.6	100	100	100		500 500 500 500	Strong to locally mo (within 3.9 to locally f bedded, g grained SANDST(interbedded	very strong an derately stron 9m-12.6m), thi thinly (3.9m-12 prey/dark grey, DNE/SILTSTO ed with mudsto	nd g ckly 2.6m) fine NE one		Discon to smo Apertur modera locally oxide s 3.9m-1 22.52m	tinuities and oth and und res are tigh ately open a open with in tained (be 2.6m & 20. and local	e rough dulose. t to and ron tween 9m, ly clay			
22		100 97 79 100 100 100		(3.9m-12. locally slig and locally weathered 3.9m-6.4n	ayers 6m). Fresh to htly weathered y moderately d (within n). <i>(continued)</i>	đ		smeare 5.32m- 12.56m Dips ar 10° and (continu	ed (5.08m-5 5.36m, I-12.6m) su e sub-horiz I locally 45 <i>ued)</i>	5.23m, infaces. contal to						
24	23.30	100	100	100		******										
25	24.50	100	100	100		2002 20002 2002 2002 2002 2002 2002 2002 2										
26	26.00					*****										
27		100	98	98	F	******			2	7 50						
18	27.50						End of Cor	ehole at 27.5	(m)	.7.50				-10,42	~~~~~	
9																
EN	MARK	s					-	INSTALL	ATION	REMA	RKS	_				
ore	terstri e box	ke al es.	0.65	im (9/	12/06); Water a	t 5.25m	(10/12/06).	9								
								GROUND	WATER	DET	AILS		-			
								Date	Hol Dep	e th	Casing Depth	Depth to Water	Comme	ents		

(10	FS				GEOT	ECHN	NICAL CO	ORE LOO	RE	col	RD			REP	ORT N	IUMBER
co	ONTR	RACT		Tarbe	ert/Bally	ongford O	nshore	SI				10.10	DRIL	LHOLE 1 ET	00	RC ⁻ She	14 et 1 of 3
CC	D-OH	DIN	ATES	(_)	102,5	62.88 N		CORE DI	AMETER (m)	m)	F	13.46 84	DAT	E START	ED	12/1 13/1	2/2006 2/2006
CL	IEN	EER	,	Shan Arup (non LNC Consultir	3 ng Enginee	rs	INCLINA FLUSH	TION			-90 AIR/MIS	DRIL T LOG	LED BY GED BY		Mille	nnium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fra Sp (r	acture acing mm) 250 500	Legend	Des	cription		Depth (m)	וס	scontinuitie	s	Elevation	Standpipe Details	SPT (N Value)
1							\$00101101101	SYMMETRI DRILLING: driller as ret gravel. SYMMETRI DRILLING:	X OPEN HO Observed by turns of clay a X OPEN HO Observed by	LE y and LE	1.50	-			11.96		N = 33 (4 4 6 7 5
2							°20 90	driller as ret gravel. SYMMETRI	urns of claye	y LE	2.40				11.06	mm	11)
3	2.80	100	98	26	F		Gravel. SYMMETE DRILLING driller as g of sandstone Strong to v to thinly be laminated, grey, fine g		Observed by avel size retu- e. Probable bedrock. rry strong, thi ded and loca rey blue/dark	rns ckly ally	2.80	Discon smooth and pla undulo tight to locally	tinuities are to locally r anar to local se. Apertur locally oper moderately	ough ly res are n with iron	10.66		
5	4.10	100	56	0	F			grey, fine gra SANDSTON with sandsto layers (2.8m 8.6m-8.8m, and locally w	ained IE interbedde ne/siltstone -3.9m, 13.3m-14.0m veaker	ed 1)		oxide s clay sn Dips an and loc fracture	tained and neared surfa re sub-horiz cally 45°-90° es.	locally aces. ontal			
5	5.30	100	45	0				mudstone la (4.66m-5.47) 6.64m-7.83n 10.0m-10.26 locally slight	yers m, 5.62m-6.5 n, 9.0m-9.25 m). Fresh to ly weathered	5m, m, 5							
7	6.40	100	62	11													
	7.70	100	89	67											111131111311		•
	9.30																
EN	ARK	s					(read)		INSTALLA	TION	REMA	RKS		1			
at Co	erstri	ke a oxes	4.6	5m (1	2/12/06); Water a	it 7.35m	1 (13/12/06).	1								
									GROUNDW	VATER	RDET	AILS					
									Date	Ho	le oth	Casing	Depth to Water	Comme	ents		
10-					-				12-12-06	00		e apar	4.63	Waters	trike		
D	ate		D De	oth P	S	B7 Baca	T	Vne	10-12-00				7.35	Standin	g		
1/1:	2/200	06	6.00		1.00	6.00	50m	m SP				24					

RC NEWLOG 10M PER PG 12239 GPJ IGSL GDT 9/3/07

6	E	R			GEOTE	CHN	ICAL CO	ORE LOG	RECO	ORD				REF	PORT NU	JMBER
CC	ONTE	TACT	-	Tarber	t/Ballylongford Or	shore	SI			-	-	DRIL	LHOLE	NO	RC1	4
cc)-OR	DINA	ATES	(_)	102,517.06 E		GROUNE	D LEVEL (m)	-	13.46	6	SHE	ET E START	ED	Sheet 12/12	2 of 3
-	1000	-			148,762.88 N	_	CORE DI	AMETER (mn	n)	84		DAT	E COMPL	ETED	13/12	/2006
EN	GINE	ER	4	Shann Arup C	on LNG onsulting Engineer	s	FLUSH			-90 AIR/N	IIST	DRIL	LED BY GED BY		Miller IGSL	inium•
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 0 ²⁵⁰ 500	Legend	Des	cription	Depth (m)	· · · · · · · · · · · · · · · · · · ·	Discor	ntinuitie	S	Elevation	Standpipe Details	SPT (N Value)
10		100	92	64			Strong to ve to thinly bec laminated, (grey, fine gr	ery strong, thic ded and loca grey blue/dark rained	ikly lly	Dis smo and und	continu ooth to planar ulose.	ities and locally to local Apertu	e rough Illy res are	T		
11	10.90	100	100	95			SANDSTON with sandsto layers (2.8m 8.6m-8.8m, and locally mudstone la	NE interbedde one/siltstone n-3.9m, 13.3m-14.0m weaker ayers	d)	tigh loca oxic clay Dip and	t to loca ally mod le stain smear s are su locally	ally ope lerately ed and ed surf ub-horiz 45°-90	n with iron locally aces. contal			
12	12.20	100	97	82	644		(4.66m-5.47 6.64m-7.83 10.0m-10.20 locally slight (continued)	7m, 5.62m-6.5 m, 9.0m-9.25r 6m). Fresh to tly weathered.	m, n,	frac	tures. (i	continu	ed)			
14	13.80	100	97	76	520											4
51	5.10	100	93	93	520											
7	6,00	100	100	100	T											
1 8	7.50	100	97	94												
3 15	9.10				820											
EMA	APK	100	100	94	710			161000 4 1 1 2 -								
ate	erstri	ke at	4.65	im (12	2/12/06); Water at	7.35m	(13/12/06).	INSTALLAT	ION REM	ARKS	-		-			
0	re Do	JXes.						000000000	A signature of the local			_				
								GROUNDW	ATER DE Hole	Casir		oth to	10			_
								Date	Depth	Dept	h V	Vater	Comme	ents		
ST.	ALL	ATIO	N DE	TAIL	S											
Di	ate	Ti	De De	oth RZ	Z Top RZ Base	T	/pe						1			

CO-ORDINATES(_) 102,517.06 E 148,762.88 N GROUND LEVEL (m) 13.46 DATE STARTED DI212/2006 CLIENT Shannon LNG Arup Consulting Engineers INCLINATION -90 DRILLED BY Millennium ENGINEER Arup Consulting Engineers Fracture Space (m) 0	co	NTR	ACT	т	arber	/Ballylong	ford Ons	shore	SI				DRILL	HOLEN	10	RC1	4
CLIENT ENGINEER Shannon LNG Arup Consulting Engineers INCLINATION FLUSH -90 AIR/MIST DRILLED BY LOGED BY Millennium IGSL (i) tig tig tig tig tig tig tig tig tig tig	co-	-ORI	DINA	TES	(_)	102,517 148,762	06 E 88 N		GROUND CORE DIA	LEVEL (m) METER (mm)		13.46 34	DATE	START	ED ETED	12/12 13/12	/2006 /2006
Image: Construction of the second		ENT	ER	S	hanno rup Co	on LNG onsulting E	Engineers		INCLINAT FLUSH	10N		90 AIR/MIST	DRILL	ED BY ED BY		Millen IGSL	nium
20 20.70 Strong to very strong, thickly to thinly bedded and locally laminated grey blue/dark g	Downhole Depth (m)	Core Run Depth (m)	T,C.R.%	S.C.R.%	R.Q.D.%	Fractu Spaci (mm	ire ng) 500	Legend	Desc	ription	Depth (m)	Dis	continuities		Elevation	Standpipe Details	SPT (N Value)
	20 21 22 22 23 23 24 25 25 26	20.70 22.30 23.80	100	94 99 100	84 82 100		e90		Strong to ver to thinly bedd laminated, gr grey, fine gra SANDSTOM with sandsto layers (2.8m- 8.6m-8.8m, 1 and locally w mudstone lay (4.66m-5.47r 6.64m-7.83m 10.0m-10.26 locally slightl (continued)	ry strong, thickly ded and locally rey blue/dark lined E interbedded ne/siltstone 3.9m, 13.3m-14.0m) reaker yers m, 5.62m-6.5m, n, 9.0m-9.25m, m). Fresh to y weathered.	24.50	Discont smooth and plai undulos tight to locally n oxide st clay sm Dips are and loca fracture	inuities are to locally ro nar to locally ro nar to locally open noderately i ained and le eared surfa e sub-horizo ally 45°-90° s. (continue	bugh y es are with ron ocally ces. ontal d)	-11.04		

A	
IGSL	

cc	ONTR	ACT	Т	arbe	rt/Ballylo	ongford Or	ishore S	51					DRIL	LHOLEN	10	RC1	8
cc)-OR	DINA	TES	(_)	102,6 148,7	31.08 E 83.91 N		GROUND CORE DI	LEVEL (m) AMETER (mn	1)	1	19.00 36	DATE DATE	T START COMPL	ED .ETED	Sheet 07/12 08/12	1 of 3 /2006 /2006
CL	GINE	ER	S	ihanr rup (ton LNG Consultin	i g Engineer	s	FLUSH	TION		,	90 AIR/MIST	DRIL	LED BY		Millen	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fra Spa (n	octure acing nm)	Legend	Dese	cription		Depth (m)	Dis	continuitie	5	Elevation	Standpipe Details	SPT (N Value)
1	0.80	100	0	0			0	SYMMETRI DRILLING: driller as reti gravel. Moderately of medium bec grained SAN Moderately of Recased: ob as rock	X OPEN HOL Observed by urns of clay a weak, thin to iding, grey, fir IDSTONE. weathered. oserved by dr	.E nd ne	0.80	Discont to plana Apertur modera are sub with su fracture	inuities are ar and undu es are tighi tely open. -horizontal o-vertical s.	rough ilose. to Dips and	18.20 17.80		
3	2.20 2.60 3.10	150 80	38 64	0	2			Strong to ve fine grained interbedded argillaceous slightly weat	ry strong, gre SANDSTON with thin bands. Fres hered	y, E h to		Discont to plana Apertur are sub locally s fracture	inuities are ar and undu es are tight -horizontal sub-vertical	rough Ilose. Dips and	16.80		
4	1.00	100	67	53	F							in a bian					
5	4.60	100	83	60													
7	6.10	100	84	59		70	6										ž
8	7.60	100	100	85		94											
9 REI	9.10 MARI	100 (S	100	87			· · · · · · · · · · · · · · · · · · ·		INSTALLA	TION	REMA	ARKS					
Vat	ter ov	erni	ght (1	2-13	8/12/06)	at 8.4m. 1	0 Core	ooxes.									
									GROUNDW	ATE	R DET	AILS					
									Date	Ho	ole	Casing	Depth to Water	Comm	ients		
									07-12-06	00	real -	-sput	8.40	Overni	ight		
-	-	1000	1.00						1.				Sector A	1	•		
NS		ATIC	ON D	ETAI	LS BZ Top	B7 Base	т	VDe					30 My.				

CO-ORDINATES() 102,631.08 E 148,783.91 N GROUND LEVEL (m) 19.00 DATE STAT DATE COM ORE DIAMETER (mm) 86 DATE COM DATE STAT DATE COM INCLINATION -90 RILLED IN	TED 07/12/2004 PLETED 08/12/2004 Y Millennium IGSL I I I I I I I I I I I I I I I I I I I
CLIENT Shannon LNG INCLINATION -90 DRILLED B ENGINEER Arup Consulting Engineers Fracture AIR/MIST LOGGED B (ii) (ii) (iii) Fracture Spacing Description (iii) (iii) (iiii) (iiii) (iiii) (iiii) Discontinuities Arup Consulting Engineers (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) Discontinuities Discontinuities (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) Discontinuities (iiii) 10 (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) 11 (iii) (iii) (iii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iii) (iii) (iii) Discontinuities are rough to planar and undulose, to planar and undulose, interbedded with thin argiltaceous bands, Fresh to claily sub-vertical (continued) (continued) 11 (iii) (iii) (iii) (iiiiii) (iiii) (iiii)	Y Millennium IGSL Standpibe Details
Image: Second	Elevation Standpipe Details
10 Image: Strong to very strong, grey, fine grained SANDSTONE interbedded with thin argiltaceous bands. Fresh to slightly weathered (continued) Discontinuities are rough to planar and undulose. Apertures are tight. Discontinued and locally sub-vertical and locally sub-vertical fractures. (continued) 11 11.30 Image: Strong to very strong, grey, fine grained SANDSTONE Discontinuities are rough to planar and undulose. Apertures are tight. Discontinued and locally sub-vertical and locally sub-vertical fractures. (continued) 12 100 100 89 13 12.80 Image: Strong to very strong, grey, fine grained SANDSTONE Image: Strong to very strong, grey, arg sub-horizontal and locally sub-vertical fractures. (continued) 14 14.30 Image: Strong to very strong, grey, arg sub-horizontal and locally sub-vertical fractures. (continued) 14 14.30 Image: Strong to very strong, grey, arg sub-horizontal and locally sub-vertical fractures. (continued)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12.60 100 100 100 14 14.30 15 100 100 67	
14.30	
15.80	
17.20 100 100 100	
9 100 100 93	
EMARKS INSTALLATION REMARKS	
GROUNDWATER DETAILS	- Make
Date Depth Depth Water Com	ments

AB
IGSL

COI	NTR	ACT	T	arbe	rt/Ballylo	ongford On	shore	SI					DRIL	HOLE	10	RC11 Sheet	8 3 of 3
co-	ORI	DINA	TES	(_)	102,63 148,78	31.08 E 83.91 N		GROUND CORE DI) LEVEL (m) AMETER (m	m)		19.00 86	DATE	START	ED .ETED	07/12/ 08/12/	/2006 /2006
ENG	ENT	ER	A	Shanr Arup C	non LNG Consulting	i g Engineer	3	INCLINA FLUSH	TION		í.	-90 AIR/MIST	DRIL	LED BY		Millen IGSL	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frad Spa (m 0 25	cture acing nm) ⁵⁰ 500	Legend	Des	cription		Depth (m)	Dis	continuities	5	Elevation	Standpipe Details	SPT (N Value)
20 2 21 21	1.30	100	100	94		L		Strong to ve fine grained interbedded argillaceous slightly wea (continued)	ery strong, gr SANDSTON with thin bands. Fre thered	ey, NE sh to		Discont to plana Apertur are sub locally s fracture	inuities are ar and undu es are tight -horizontal sub-vertical s. (continue	rough Ilose. . Dips and and			
22		100	90	90	E												
23	2.60	100	78	78													
24	3.50	100	100	93		11											
25 25	5.00	100	100	77													•
28 26 26	5.70 6.30	100	100	67	-	-690											
27		100	100	95		740											
27	7.80	85	85	85		670											
29 29	9.10			T				End of Corel	hole at 29.1	(m)	29.10				-10.10		
REM	ARK	(S	what (i		140100			N-027	INSTALL	ATION	REM	ARKS		-			
vate	er ov	erniç	int (1	2-13	/12/06) a	at 8,4m, 10	Core	DOXES.	0.000								
									Date	H	R DET	Casing	Depth to	Comm	ents		
				_					02.12	De	pth	Depth	water	1.2000			
D	ALL	ATIC	p De	eth I	LS RZ Ton	RZ Base	т	vpe									
8/12	2/200	06	10.0	0	1.00	10.00	50n	nm SP				1.1		1.0			

co	NTR	ACT	٦	arbe	rt/Ballylongford Or	nshore §	51				DRILL	HOLEN	10	RCI	9
20-	ORI	DINA	TES	(_)	102,648.52 E 148,842.78 N		GROUND CORE DIA	LEVEL (m) AMETER (mm)		12.97 84	DATE	START	ED .ETED	05/12 06/12	2/2006 2/2006
	ENT	ER	A	Shanr	non LNG Consulting Engineer	s	INCLINAT FLUSH	TION	1	-90 AIR/MIST	DRILI	ED BY		Mille IGSL	nnium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Dese	pription	Depth (m)	Dis	continuities	1	Elevation	Standpipe Details	SPT (N Value)
0						011010	SYMMETRI: DRILLING: driller as retu gravel.	X OPEN HOLE Observed by urns of clay and	1 1.30						N = 36
							SYMMETRIX DRILLING:	X OPEN HOLE Observed by	1.80				11.67		(9, 11, 10, 8, 12)
2	0.50	100	100	49	⁴⁹		of siltstone/s Probable be Strong to ve	andstone . drock. ry strong, thin t		Disconti smooth and plan	nuities are to locally re har to local e. Apertur	bugh ly es are	11.17		
	4.00	100	97	51	F		thickly bedde grey/blue/pa grained SAN siltstone/san	ed, le grey, fine IDSTONE with dstone layers		tight to a common stained	open with hly iron oxid and locally	ie clay		minin	
	3.40 3.80	100	70	0			(3.0m-3.4m, 16.9m-19.2m	4.0m-6.7m, n). Fresh to		are sub- locally 6	horizontal 0°-90°.	and			
	5.30	100	94	35											
	2.00	100	94	46											
e	3.70	100	100	52	E										
8	9.20	100	100	85	-59	8									
9	.70														
EM	ARK re b	(S oxes		-			_	INSTALLATI	ON REM	ARKS					
								GROUNDWA		All S					
								Date	Hole	Casing	Depth to	Comm	ents		
						_			Depth	Depth	water		angel a		
D	ALL	ATIC	DN D	epth	LS RZ Top RZ Base	T	Vpe								
D	ate	T	p De	epth 1	RZ Top RZ Base	T 50n	Vpe nm SP					-			

20	NTR	ACT	Ţ	arbert	/Ballylongford On	shore	SI	1 m m 1 m 1		13.10	DRIL	LHOLE N	10	RC19 Sheet	2 of 3
20	-ORI	DINA	TES	(_)	102,648.52 E 148,842.78 N		CORE DI	AMETER (mm)		12.97 84	DATE	START	ED ETED	05/12/ 06/12/	2006 2006
CL	GINE	ER	A	hanno rup Co	on LNG onsulting Engineer	s	INCLINA FLUSH	TION		-90 AIR/MIST	DRIL	LED BY GED BY		Millenr IGSL	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Des	cription	Depth (m)	Disc	continuitie	5	Elevation	Standpipe Details	SPT (N Value)
10	11.20	100	100	59		A	Strong to ver thickly bedd grey/blue/pa grained SAt siltstone/sar (3.0m-3.4m, 16.9m-19.2t	ery strong, thin to ed, ale grey, fine NDSTONE with ndstone layers 4.0m-6.7m, m) Fresh to	2	Disconti smooth and plan undulose tight to c common stained	nuities are to locally r har to local e. Apertur open with hly iron oxi-	ough lly res are de			
12		100	99	84	F		locally slight (continued)	ly weathered.		smeared are sub- locally 6 (continue	l surfaces horizontal 0°-90°. ed)	Dips and			
13	12.60	100	90	64											
14		100	91	53											
15	15.00	100	97	88	ence										÷
17		100	100	94	690										
19	7.90	100	97	89	990 540										
EN	9.40	s						INSTALLATIO	DN REM	ARKS					
Co	ore b	oxes													
								GROUNDWAT	TER DET	AILS		1			
										12 minimized	And the second sec				

-	~	_	1	-											
co	NTR	ACT	Т	arber	t/Ballylongford On:	shore	SI				DRI	LLHOLE	NO	RC1	9 13 of 3
co	-OR	DINA	TES	_)	102,648.52 E 148,842.78 N		GROUN CORE D	d Level (m) IAMeter (mm)		12.97 84	DAT	E START	ED ETED	05/12	/2006
CL	GINE	ER	S	hann rup C	on LNG onsulting Engineers		INCLINA FLUSH	TION		-90 AIR/MIST	DRI	LLED BY		Miller	inlum
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm)	Legend	Des	scription	Depth (m)	Dis	continuiti	es	Elevation	Standpipe Details	SPT (N Value)
20		100	100	81			Strong to v thickly bedo grey/blue/p	ery strong, thin to ded, ale grey, fine	1	Discont smooth and pla	inuities ar to locally nar to loca	e rough allv			
21	20.90	100	87	77	680		grained SA siltstone/sa (3.0m-3.4m 16.9m-19.2 locally sligh (continued)	NDŠTÓNE with indstone layers a, 4.0m-6.7m, im). Fresh to itly weathered.	22.40	undulos tight to commo stained smeare are sub locally 6 (continu	e. Apertu open with nly iron ox and local d surfaces horizonta 0°-90°. ed)	ide dde y clay s. Dips I and			÷
23	22.40						End of Core	ehole at 22.4 (m)	22.40				-9.44	2222	
Ì															
24															
25															
26															
27															•
28															
9															
EM	ADV	5						INOTAL LAND		BUZE				1	
Co	re bo	xes.						INSTALLATION	REMA	HKS				-	
								GROUNDWATE		AILS					
								Date H	ole	Casing	Depth to	Comm	ents		
								De	pm	Depth	water				

1	2	
38	3L	1
		1) SSL

co	NTR	ACT	т	arbe	rt/Ballylo	ngford On	shore S	61				DRILL	HOLEN	10	RC20) 1 of 3
co	-OR	DINA	TES(_)	102,70 148,82	9.25 E 26.11 N		GROUND I	LEVEL (m) METER (mm)		18.10 84	DATE	STARTI COMPL	ed Eted	01/12/ 04/12/	2006 2006
CL	GINE	ER	S A	hanr rup C	non LNG Consulting	g Engineers	3	INCLINATI FLUSH	ON		-90 AIR/MIST	DRILL	ED BY ED BY		Millen	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m	cture icing im)	Legend	Desci	ription	Depth (m)	Dis	continuities		Elevation	Standpipe Details	SPT (N Value)
0	0.80						0	SYMMETRIX DRILLING: 0 driller as retu gravel.	OPEN HOLE Observed by rns of clay an	d 0.50	Discont	inuities are	rough	17.60		
1	1.50	100	36	20	E.			DRILLING: 0 driller as grav	Observed by vel size return /siltstone.	s	to smoo undulos tight to	th and plan e. Aperture open with in	ar to es are on	11.00		
2	2.50	100	0	Q	-			Probable bed Strong to loca strong, thin to bedding, grey very fine grain	frock. ally moderatel o medium y to dark grey, ned cross	y	oxide st clay sm Dips are and loca fracture	ained and l eared surfa sub-horizo ally sub-ver s (1.58m-1.	ocally ces. ontal tical 96m,			
3		100	85	63				bedded SANI SILTSTONE. locally slightly moderately w	DSTONE with Fresh to and eathered.		3.13m-3 and hea stained]	8.27m[lamir ivily iron-ox , 6.32m-6.3	ide 18m).			
4	4.00	_		-	E											
5		100	75	53	F											
6	5.50	100	69	48	-	1	$A_{1} = A_{2} + A_{3} + A_{3$								÷	
7	0.40	100	88	25	Link											
8	7.70	100	92	63			Strong to very medium to thic grey to dark gra grained SAND		y strong, ick bedding, grey, very fine DSTONE with	7.90	Discontinuities are rough and planar to undulose. Apertures moderately onen with locally iron			10.20		
9	9.00	100 92 63 grained S minor silt 100 95 86	grained SANDSTONE with minor siltstone. Fresh to locally slightly weathered.			open with locally iron oxide stained surfaces. Dips are sub-horizontal and locally sub-vertical fractures (10.83m-10.93m).										
RE	MARI	<s< td=""><td></td><td></td><td></td><td></td><td></td><td><u>.</u></td><td>INSTALLAT</td><td>ION REM</td><td>ARKS</td><td></td><td></td><td></td><td>VIXON</td><td></td></s<>						<u>.</u>	INSTALLAT	ION REM	ARKS				VIXON	
Na	terstr	ike a	it 3.4	m ar	nd standi	ng to 4/12	/06. 15	Core boxes.								
									GROUNDW	ATER DE	TAILS	D				
									Date	Depth	Depth	Depth to Water	Comm	ents		
								01-12-04			340	I VV ATEL	SUIKE			
NS	TALL	STALLATION DETAILS						14-12-06			3.40	Over 3	3 days		1.	

1	1	>												REP	ORT NU	MBER
6	500				(GEOTE	CHN	ICAL CO	RE LOG	RECO	RD				122	39
co	NTR	ACT	Т	arber	t/Ballylo	ongford On	shore	SI				DRILL	HOLEN	10	RC20	0 et c
co	OR	DINA	TES	(_)	102,70 148,82	09.25 E 26.11 N		GROUND CORE DIA	LEVEL (m) METER (mr	n)	18.10 84	DATE DATE	STARTE	ed eted	01/12/ 04/12/	2 01 3 2006 2006
CL	IENT	ER	S	hann rup C	on LNG onsulting	g Engineer	6	INCLINAT FLUSH	ION L	-	-90 AIR/MIST	DRILL	ED BY ED BY		Millenr IGSL	nium
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa (m 0 2f	cture acing nm) ⁵⁰ 500	Legend	Desc	ription	Depth (m)	Dis	continuities	4	Elevation	Standpipe Details	SPT (N Value)
10			1H		-			Strong to ver medium to th	ry strong, hick bedding		Discont and plai	nuities are har to undu	rough lose.			
'n	10.50	100	92	82	E			grey to dark grained SAN minor siltstor locally slightl (continued)	grey, very fir DSTONE w ne. Fresh to y weathered	ith	Aperture open wi oxide st Dips are and loca fracture (10.83m	es moderate th locally inc ained surface sub-horizo ally sub-vert s	ely on ces. ontal tical			
12	12.00	1	-	-							(continu	ed)				
13		100	91	79		54	6									
14	13.50	100	92	81		55	c									
15	14.70	100	100	93												
16	16.20	100	100	97		65										
18	17.70	100	100	69												
19	19.20					i la	90									
RE	MAR	KS					EEE		INSTALL	ATION REM	IARKS			-		
Va	terst	ike a	at 3.4	m an	d standi	ng to 4/12/	/06. 15	Core boxes.								
									GROUND	WATER DE	TAILS				_	
									Date	Hole Depth	Casing Depth	Depth to Water	Comm	ents		
NS	TAL	ATI	ON D	ETAI	LS											
1	Date	T	ip De	epth I	RZ Top	RZ Base	1	Туре								
									1	1						

0	69	J.									,			_	122	39	
CONTRACT Tarbert/Ballylongford Onshore SI							shore S	SI	DRILLE					IOLE NO RC20			
CO-ORDINATES(_) 102,709.25 E GROUI 148,826,11 N CORE								GROUND I	ND LEVEL (m) 18.10 DIAMETER (mm) 84				DATE STARTED DATE COMPLETED			01/12/2006 04/12/2006.	
	GINE	ER	S A	hann rup C	on LNG onsulting	g Engineer	s	INCLINATI FLUSH	LINATION -90 ISH AIR/MIST				DRILLED BY LOGGED BY			Millennium IGSL	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	8.Q.D.%	Frac Spa (m 0 ²⁵	cture cing im) 500 500	Legend	Desci	iption	Depth (m)	Disc	ontinuities		Elevation	Standpipe Details	SPT (N Value)	
20,	20.70	100	100 90 90 90 90 90 90 90 90 90 90 90 90 9		Strong to very strong, medium to thick bedding, grey to dark grey, very fine grained SANDSTONE with minor siltstone. Fresh to locally slightly weathered. (continued)			Discontinuities are rough and planar to undulose. Apertures moderately open with locally iron oxide stained surfaces. Dips are sub-horizontal and locally sub-vertical fractures (10.83m-10.93m). (continued)									
23	22.10	100	96	96													
24	23.50	100	100	86			180'										
26	00.00	100	92	71													
27	26.50	100	99	84		7	70			28.00							
28	28.00							End of Coreh	ole at 28 (m)					-9.90			
29	MAP	KS							INSTALLA		ARKS					-	
Na	terst	rike a	t 3.4	m an	d standi	ng to 4/12	2/06. 15	Core boxes.	MUTALLA	HOA HEN	carbiy						
									GROUNDW	ATER DE	TAILS		-				
									Date	Hole	Casing Depth	Depth to Water	Comm	nents			
	(2.0 <i>F</i>	-								Peptit	- optit						
NS	Date	LATI	ID NO	epth	RZ Top	B7 Baco		Type									
	12/20	006	0.8	0	0.00	0.80	50	mm SP					-				

105	A	GEOTECHNICAL CORE LOG RECORD												122	139	
ONTE	RACT	т	arber	t/Ballylon	gford Ons	hore SI	DP					RILLHOLE NO			3	
CO-ORDINATES(_) 102,143.35 E GROU 148,540.51 N CORE								OUND LEVEL (m) 13.11 RE DIAMETER (mm) 102 CLINATION -90 USH AIR/MIST			DATE STARTED DATE COMPLETED DRILLED BY LOGGED BY			Sheet 1 or 2 16/11/2006 0 17/11/2006 Millennium IGSL		
CLIENT Shannon LNG INCLINATIO																
Downhole Depth (m) Core Run Depth (m)	T.C.R.%	S.C.R.%	Fracture Spacing Desc % (mm) pu 2 0 250 500 9		Descri	ption	Disco Disco		ntinuities		Elevation	Standpipe Details	SPT (N Value)			
1						NT LOT LOT	SYMMETRIX DRILLING: O driller as retur gravel and col	OPEN HOLE bserved by ns of clay and bbles.							N = 27 (2, 5, 4, 7, 6 10)	
3						D L O L									N = 15 (1, 2, 3, 1, 4 7)	
4						TTOTT:									N = 35 (3, 5, 8, 9, 8 10)	
6						UTT OT			6.70						N = 41 (19, 6, 11, 7 10, 13)	
7 7.0	100	21	0			*******	SYMMETRIX DRILLING: 0 driller as grav of . Probable Moderately w moderately s	OPEN HOLE Observed by yel size returns bedrock. reak to trong, thin to	8.00	Discontin smooth a Aperture locally m with corr	nuities are and undulo s are open oderately o monly clay	se. to open	6.41 6.11			
9	100	9 42	42				weathered.	/SILTSTONE. o locally slightly		smeared are 10° a fractures	l surfaces. and irregula 3.	Dips ar	5.11			
9.4	40										_					
REMA Water	ARKS	at 6	.7m.	6 Core bo	xes.	-		INSTALLATI	ON REM	ARKS	_				τ.	
								GROUNDWA	TER DF	TAILS						
								Date	Hole	Casing	asing Depth to Con			nments		
								16-11-06	Depth	Depth	6.70	Wate	rstrike	1		
INST	ALLA	TION	DET	AILS												
Da	ate	Tip	Depti	RZ Top	RZ Base	e	Түре									
17/11	/2006	7	.50	5.00	7.50	50	mm SP						-			

cor	NTR	ACT	Та	arber	/Ballylongford Or	shore S	51				DRILLH SHEET	OLE N	0	RC23 Sheet	2 of 2	
co-	ORD	DINA	res(_)	102,143.35 E 148,540.51 N		GROUND CORE DIA	GROUND LEVEL (m) 13.11 CORE DIAMETER (mm) 102 INCLINATION -90 FLUSH AIR/MIST			DATE STARTED			16/11/2006 ED 17/11/2006		
	ENT	ER	S	hann rup C	on LNG onsulting Engineer	s	INCLINAT FLUSH				DRILLE	DRILLED BY Millennium LOGGED BY IGSL				
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fracture Spacing (mm) 0 ²⁵⁰ 500	Legend	Desc	ription	ption (E) Discon		ntinuities	tinuities uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto agentiations uoto uoto uoto uoto uoto uoto uoto uot		Standpipe Details	· SPT (N Value)	
10	10.90	100	79	79 73			Strong to loc strong, thin t bedding, gre medium grai SANDSTON	ong to locally moderately ong, thin to medium dding, grey, fine to dium grained NDSTONE with lenses of		Discontin and undu and local Apertures moderate	scontinuities are rough id undulose to planar id locally smooth. pertures are open to oderately open. Dips					
11		100	93	77			siltstone. Fr slightly weat (continued)	esh to locally hered.		are 10° an 90° and irr fractures.		id locally sub regular (continued)				
13	12.40	100	77	34		******	Strong to moderately strong and very locally moderately weak, thinly bedded (cross stratified), grey/dark grey, fine to locally medium grained SILTSTONE/MUDSTONE with lenses of sandstone. Fresh to locally slightly weathered.		12.60	Discontinuities are smooth and planar to undulose. Apertures are open to locally tight with commonly clay smeared surfaces. Dips are 10° and locally 90° fractures.		o s are with ared 10°	0.51			
14	13.90	100	96	34		****						urës.				
16	15.50	100	85	63		*****			16.70							
	16.10	100	67	23	F	****										
17	16.70						End of Core	End of Corehole at 16.8 (m)					-3.59			
18																
19																
DF	MAT	Ke						INSTALLATIO	ON REM	ARKS	_	-				
Wa	aters	trike	at 6.	7m. 6	Core boxes.											
								GROUNDWATER DETAILS			S					
								Date	Hole Depth	Casing Depth	Depth to Water	Com	ments			
-				_							1.1.1	-				